

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

770 remittancesreview.com

Received : 15 February 2024, Accepted: 10 July 2024

DOI: https://doi.org/10.33282/rr.vx9i2.44

A SYSTEMATIC ANALYSIS ON SOFTWARE ARCHITECTURE

RECOVERY TECHNIQUES

Usama Hafeez1, Muhammad Kaleem2,Muhammad Azhar Mushtaq2 , Shahid Khan3,

Sheraz Butt4, Ammad Ahmed5 , Dr.Sadaqat Ali Ramay6 ,Sayyid Kamran Hussain6

1Department of Software Engineering, University of Sargodha, Sargodha, Pakistan

2 Department of Information Technology, University of Sargodha, Sargodha, Pakistan

3Senior SolutionArchitect, P.O.Box 357, Dammam SaudiArabia

4Senior System Analyst, Department of Social Services, South Carolina, USA

5Product Design (UX/UI) manager Dubai,UAE

6Department of Computer Science, Faculty of Science and Technology, TIMES Institute, Multan,

Pakistan.

Abstract

Software architecture describes the components and their interactions inside a

software system. Rapid iteration and frequent releases have become crucial in

today's software industry. As a result, there has been a breakdown in the software's

architecture due to a lack of careful planning and documentation during its

development. Software architecture recovery refers to the process of reassembling

the architecture of a software system from its implementation-level artifacts. In order

to automatically reconstruct software architectures from software implementations,

many different approaches have been proposed. These methods and tools include

reverse engineering, static analysis, and dynamic analysis. Software architects,

designers, and maintenance engineers have access to a powerful tool in the form of

these methodologies, which they may utilize to assist a variety of software-

development processes and assure the long-term sustainability of software systems.

This study's main goal is to examine existing software architecture recovery

methods.

Keywords: Software architecture recovery, software reconstruction, software

components recovery.

https://doi.org/10.33282/rr.vx9i2.44

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

771 remittancesreview.com

I. INTRODUCTION
It is essential to have an understanding of

software in order to keep it running smoothly and

to perform any necessary maintenance on it.

Insufficient paperwork and a lack of

understanding with the software present the

greatest dilemma during the recovery phase [1].

This is because the cost of manual recovery is

high, and it takes a significant amount of time. As

a result of this, there are currently efforts being

made to lighten the load[2]. As more time passes,

the documentation has either stopped being

regularly updated or is completely absent.

Numerous research efforts have been focused on

reconstructing the software's architecture [3], and

it has been the subject of these efforts. The

recovered architecture can be utilized for variety

of purposes, including the analysis of the overall

structure of the software, the identification of

architectural improvements and deterioration [4],

and so on.

In the event that software evolves, less

attention being paid to the architecture of

software will result in enormous costs associated

with the redevelopment of the product from

scratch. It is essential for the architecture of the

software in question to be both known and

flexible in order to encourage its evolution. It is

possible that performance will suffer if

modifications that violate the architecture of the

system are implemented. Using the syntactic

component of the program, a large variety of

methodologies have been presented over the

course of the years in order to aid in recovering

the structure of such software systems [5].

In software architecture recovery, the whole

system is broken down into its component parts

so that they can be understood individually. In the

research that has been done on the subject, terms

such as decomposition, re-modularization,

splitting, clustering, and reconstruction have been

used to talk about the different ways that software

architecture can be rebuilt. The following four

steps are taken to restore the structure of the

software: highlighting a software entity;

computing the degree of similarity between

entities; clustering; evaluating [6].

Software product line construction produces

groups of software products with greater quality

and lower development costs and time to market.

By performing an analysis of the similarity and

variance of the different types of products that are

to be developed and by recycling common

components as much possible during the process

of actually developing the product variants,

Software Product Line Engineering (SPLE) is

able to overcome the challenges that are

presented by the clone-and-own methodology.

So, it is logical to consider moving the product

variations that were developed based on the

clone-and-own strategy can be utilized for further

maintenance and development of the product.

These product variants are also known as product

families [6].

This survey is being carried out with the

intention of gaining a better understanding of

software architecture loss as well as the solutions

that have been proposed to reconfigure the

architecture of certain software by making use of

recovery techniques. The remaining sections of

the paper are as follows: Section II discusses

related work; Section III details the challenges;

Section IV features a conclusion of the paper; and

Section V offers discussion of possible future

work.

II. CHALLENGES AND ISSUES OF

SOFTWARE ARCHITECTURE

RECOVERY
Software architecture recovery refers to the

process of re-creating the architecture of a source

code using the system's present implementation-

level software artifacts and documentation as the

primary sources of information. Despite of these

advancements, there are still a great many

obstacles that need to be overcome to render

source code recession a more effective solution.

These obstacles include the following:

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

772 remittancesreview.com

Figure 1. Challenges and issues of software architecture

recovery

1. Software systems can become more

complicated over time; sometimes this is due

to the emergence of computational

complexities, which makes it difficult to

comprehend the connections between the

various components and the ways in which

they collaborate.[10].

2. Software clustering methods produce large

decompositions as visualization output.

Consequently, it is difficult to design a user

interface that can effectively convey a software

decomposition to a software engineer.

Decomposition of software should be linked to

its source code, documentation, and so on, and

the user interface should make it easy to navigate

through the results. Better visualization of

software clustering results would increase the

effectiveness of software clustering methods.

[32].

3. It can be challenging to encapsulate and

comprehend the dynamic characteristics of a

software package, such as the interactions

between its components. Prior to making any

additional key changes, the institutional views

must be as precise as possible. Deployment

views, for instance, continue to depend strongly

on precise cognize and component

configurations [1].

4. The flexibility of conventional recovery

methods can be improved by grouping the

elements before extraction,moreovereventually

results strategies with higher scalability could

exert precision issues for each method [33].

5. Operations known as refactoring and re-

modularization can be carried out on software

architecture in order to remove complexities that

have been caused by software evolution. As a

consequence of this, it can be challenging to

modularize system classes while preserving the

optimal balance that should exist between

cohesion and coupling [11].

6. The process of cluster discovery, which includes

both the phase of computing similarity and the

phase of creating clusters, is one that can be

improved by either a new source code clustering

method or developing a new technique for

computing resemblance coefficients. A nested

decomposition can be generated by a software

clustering method however, there is not yet an

optimization-based software clustering method

that can generate a nested decomposition [32].

III. TAXONOMY OF ARCHITECTURE

RECOVERY TECHNIQUES
Clustering algorithms, behavior-based

methods, and filtering methods all play roles in

architecture recovery methods. Most filtering

methods also are premised on clustering

algorithms because they only give us partial

information about the software system's

architecture to begin with, whereas in cluster

formation, the groups formed of familiar

elements typically reveal the full picture.

Behavior-based techniques are being

incorporated into existing clustering algorithms

because the attempt necessitated by locating the

architecture of a current applications using a

clustering method is lower than that provided by

the behavior-based techniques.[7].

Characterizing software architecture from

code manuscripts is a time-consuming process,

and it can be difficult to know how much weight

to give to structural and semantic information

such as comments and identifier names. Low-

quality code, a lack of software dependency info,

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

773 remittancesreview.com

and structural chaos all work against successful

architectural recovery [8]. This issue may be

resolved by locating and removing textual

anomalies in software code elements which could

cause an incorrect architecture recovery [9].

Conceptual conformity (CC) is a score

indicating how closely the subject matter of the

code and the package are related. According to

[8] a textual anomaly is a chunk of code that CC

deems unrelated to the rest of the package's

contents. Semantic-information-based

architectural recovery [10] allows for the

conceptual dissection of software systems.

However, the precision of the decomposition is

affected by the textual efficiency of the source

code. It is possible to achieve a higher level of

precision in the architecture recovery process by

omitting textual anomalies.

Coevolving software components are said to

be evolutionarily coupled because of the

underlying communication between them.

Software architecture can be retrieved through

experimentation with the coupling of evolution

[11]. Software Architecture Recovery (SAR) uses

the dependency graph as its input mechanism.

Many kinds of communication between modules

of software are represented by these graphs. It is

the developers' intention, during implementation,

to keep the overall level of cohesion and coupling

between modules reasonable[12].

There are a number of methods proposed for

automatically recovering software architecture

from code. Utilizing symbol dependencies on

recovery strategies by include them as inputs,

these are more precise then input dependencies

whereas input dependencies can improve prior

research [1].

An appropriate ground-truth architecture takes

an average of 80–90 hours of work from a

competent individual [13] , and that's just for

average-sized projects. Having a firm grasp of

ground truth architectures helps us better

understand designs and develop more effective

recovery methods. The Cacophony technique

[14]. involves recovering and reverse-

engineering a software system by hand using a

metamodel. Rigi [15] and ShriMP[16] are indeed

the tools to use when analyzing and visualizing

software dependencies. To manually arrange

components that are similar, you will need a

developer who has an in-depth understanding of

the project.

Clustering is more challenging with

categorical data because there is no natural

distance between data values. The highly efficient

hierarchical clustering algorithm, which would be

premised upon an Information Bottleneck

structure for figuring out how much relevant

information is kept when clustering is LIMBO,

does have the benefit of being able to make

clusters of different sizes in a single run. This lets

you choose between speed and quality[20].

Several articles analyzing and contrasting

various methods for recovering lost architectural

information make up the relevant literature.

However, attention was paid to only a small

subset of clustering algorithms. The purpose of

this paper is to provide a comprehensive

overview of software architecture recovery

approaches.

Figure 2. Taxonomy of software architecture recovery

A. Code cluster

Decomposing a complex software system into

smaller subsystems is made easier with the aid of

code pattern/cluster, which does so by recovering

components via patterns. It achieves its goal in

that the clusters are appropriately named, their

architectures are based on established patterns

that developers relied upon when creating

software artefacts, and there are no superfluous

elements within any given cluster.

Structural and textual information can help

deliver software architecture from code. Textual

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

774 remittancesreview.com

anomalies in source code artifacts hinder

architecture recovery. Conceptual Conformity

compares two source code and package latent

topic distributions. Removing semantic outliers

to prevent architecture recovery errors. Semantic

information-based architecture recovery

deconstructs software systems. Filtering textual

anomalies improves decomposition accuracy [8].

Cluster ensembles guide software architecture

module recovery. Extracting software facts from

the software repository. Base clustering, which

are recovered module views, are then created

from the extracted facts. Meta-Clustering

Algorithm (MCLA), HyperGraphs Partitioning

Algorithm (HGPA), Hybrid Bipartite Graph

Formulation (HBGF), Evidence Accumulation

Algorithm (EA), and Cluster-based Similarity

Partitioning Algorithm (CSPA) consensus

methods are compared using cluster ensembles.

Using a consensus method with multiple base

clustering algorithms could improve

performance. MCLA and EA performed well in a

five-open-source project consensus

experiment.[17].

Previous research focused on a system's

architecture rather than its cause. RecovAr is a

method for inevitably restore design decisions

from a project's easily accessible history artefacts.

It is not dependent on the architecture of a system,

but it does need a way to get static architectural

structure from interoperability manuscripts.

Architecture Recovery, Change, And Decay

Evaluator (ARCADE) measures architectural

change and uses architecture-recovery methods.

Algorithm for Comprehension-Driven Clustering

(ACDC) and Architecture Recovery using

Concerns (ARC) recover components from code

[10].

Most of the suggested methods use

hierarchical clustering algorithms to reconstruct

the original layout of a piece of software. In this

refined approach to hierarchical clustering, we

employ a LIMBO-based fuzzy hierarchical

clustering algorithm. To generate a cluster and

enhance its accuracy, this algorithm first helps in

extracting the knowledge that describes the

system for clustering, then initializes weights to

the information extracted [18].

Selecting the best software clustering method

to aid in deciphering a complex system is

challenging. The efficiency of an algorithm can

depend on a number of different things, such as

the decompositions it generates and the names it

gives to its clusters. To evaluate the efficiency of

software clustering algorithms, the move or

joinalso known as MOJO distance is used. This

distance is the fewest move or join operations

needed to transform cluster A into cluster B, or

vice versa.[19].

B. Dependency graph

Dependency graphs show how various

software components are interconnected.

Assuming that developers share this objective

during design and implementation, these modules

are grouped together to achieve a nearly best

solution of cohesion and coupling.

Legacy software may lack documentation.

Manual documentation recovery is costly.

Domain experts work hundreds of hours. Module

dependencies derived from source code have

dominated module view construction research.

These dependencies are usually graphed. If

coupling is measured for recovery architecture,

the graph's segments can be balanced. File

inclusion dependency graphs provide ground-

truth architectures. Dependency graphs are input

to the module. Evolutionary coupling has been

tested for software architecture recovery [11].

To understand large software systems,

program modularization and refactoring are used.

These algorithms create software architecture by

breaking the software system's raw data into

relatively small, more manageable modules. The

source code artefact dependency graph is not used

in these methods. Graph-based modularization

overcomes modularization's limitations. This

algorithm tests 10 Mozilla Firefox folders and 4

other applications. The proposed algorithm

generates reusability that is nearer to the specified

directory than other algorithms [21].

Directory paths help recover architecture from

software design information. Directories are

incorrect due to development and design

inconsistency. A file-level dependency graph is

used to group intra and inter coupling documents

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

775 remittancesreview.com

within a single repository into submodules and

generate a submodule-level dependency graph.

The results suggest this method could boost

recovery efficiency and effectiveness. This

technique improves recovery performance on

small projects because prevailing configurations

work well with a few software entities [22].

C. Text based classification

Software systems often lack current

architecture documentation. Concern-oriented

architectural recovery methods have been

developed to address this issue. RELAX, a new

text classification-based concern-based recovery

method, solves these problems. Text-based

classification for architectural information

extraction. These methods are limited by the

classifier's extensive architecture knowledge

[23].

From the source code, the RELAX software

architecture recovery process can achieve a visual

and textual concern-based architectural view of

the software system. Some of them fail to meet

deadlines because they lack recovery data.

Participants' experiences and opinions show that

RELAX is helpful in speeding up the beginning

of maintenance, and it could form the base for

future techniques that specifically support the

evolution with a focus on maintenance[24].

Using a Nonparametric classification model

and an Orphan adoption classifier, this iterative

source code recovery technique is driven by code

changes to update the original architectural

documentation. In contrast to more standard

approaches, our method takes into account code

resemblance all through evolution and keep

updating the prior methodology based upon that

changed spots as opposed to performing a full

cluster analysis or classification [25].

D. Component based techniques

By recovering or highlighting packages and

classes, component-based techniques are used to

reconstruct the architecture, which then

contributes to the production of UML package

and class diagrams.

In software product families, it is common

practice to recover the structure of a software

product line by studying the products in the

family that were created using the clone-and-own

approach, which involves recycling strategies

used in previously developed products. Classes

that are clones of other classes, classes that are

clones of modifications to other classes, and

classes that are unique to the product itself are all

dissected and analyzed. The generated PLA's

architectural elements are mapped into a set of

centralized packages, with their degrees of

similarity and variability represented by class

diagrams. Because of the recovered PLA, we can

now switch from our current clone and method to

one based on SPL [6].

Pre-planned standardized reusability of large-

grained software artefacts increases software

productivity and reduces development costs in

Production Line of Software Engineering.

Reverse engineering product variant architecture.

We want to find architectural element variant

differences and dependencies. Identifying

architecture variability from each product does

this. Thus, we find component-based architecture

in each product's object-oriented source code.

Healing begins here. To identify architecture and

design variability in component-based

architectures, we recognize component variants

with similar functionalities [26].

The primary phase of developing complex

systems is now the conceptual model and

reflection of software architectures. There are

many advantages to representing software

architecture at all stages. Removing a component

based architectural style from an existing object-

oriented system is the primary focus of

ROMANTIC. The primary goal of this strategy is

to suggest a method for architecture recovery that

is only partially automated, and which relies on

the textual and functional properties of software

product concepts [27].

Software product families use the line of

software products approach for systematic reuse.

Anomalous variants can become very different

from their predecessors, making line of products

model from existing framework variants difficult.

PLA recovery with outlier variants complicates

architectural decisions. Formal concept analysis

identified outliers. Threshold analysis decreased

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

776 remittancesreview.com

the number of an exclusive components while

retaining the recovered PLA variants [28].

E. Identify code dependencies

Several methods exist for instantaneously

recovery architecture from code. Understanding

requires extensive research and comparison.

Utilizing symbol relationships on mitigation

strategies by including function, method, and

variable names as inputs and is more accurate

than input relationships. Input dependencies help

previous research. The studies show how

dynamic bindings resolution, dependency

granularity, and direct or transitive dependencies

affect recovery technique accuracy and

scalability. [1].

Many methods exist to instantaneously

retrieve architecture from software

implementation. Installing something requires a

third-party code dependency. External

dependencies affect the application, but it's hard

to make software without them. We retrieve the

majority of the system's main features from its

header files, which are include dependencies.

Dependency graphs show symbol relationships

among project tasks and outside activities that

must be scheduled. We assessed SAR technique

dependencies using MoJoFM and Normalized

TurboMQ. [29].

Long-term software development with

hundreds of billions of lines of code can incur

technical debt from module dependencies.

Underutilized dependencies slow down the

construction process and increase file size,

resulting in poor cohesion. Inconsistent

dependencies break software. The project's core

modules use third-party libraries, an inconsistent

dependency. Programmers may break design

guidelines and introduce inconsistencies for

short-term gains. CodeSurfer and CppDepend

extract structural and behavioral dependencies

[30].

MoJoFM is a tool that can be utilized to

evaluate the recovered architectures in terms of

how closely they resemble the architecture that

was initially developed. The formula that

describes it is as follows:

MoJoFM = (1 -
𝑚𝑛𝑜(𝐴,𝐵)

𝑚𝑎𝑥(𝑚𝑛𝑜(∀𝐴,𝐵))
) x 100(1)

Where A stands for the recovery architecture,

B for the ground truth architecture, and mno(A,

B) for the minimum amount of Move and Join

operations that must be performed in order to

transform A into B.

The shortcomings that were listed above are

addressed by the effectiveness metric that is

presented in this paper. MoJoFM makes the

following features available to its users: (1) The

paradox is sidestepped by substituting mno(A, B)

for MoJo(A, B) in the ratio of the its formula. This

allows the argument to be valid. (2) It makes use

of the most advanced algorithm currently

available for determining mno (A, B). (3) It

determines the actual maximum range to partition

B by computing the divisor of its formula.

IV. DISCUSSION AND FUTURE WORK

To recover software architecture, one must

learn and record the structure of a conventional

software product. The goal of architecture

recovery is to analyze and record the architecture

of a software system in order to enhance its

maintainability, scalability, and quality. Here,

we'll talk about why software architecture

recovery is so crucial, what kinds of problems it

might cause, and what kinds of solutions have

been developed to address those problems. It is

possible to recover the design of an existing

software system by using certain software

architecture recovery methods. These methods

are critical for software upkeep and improvement

because they provide programmers with the

information they need to make corrections and

additions. Here we'll take a look at some of the

most popular software architecture recovery

methods. By analyzing the software system's

code using code dependency methodologies, its

architectural components may be determined.

Dynamic and static analysis are two of these

methods. Comparatively, dynamic analysis

entails running the code and seeing its results,

whereas static analysis just examines the code

itself. Techniques for analyzing code

dependencies may be used to map out how

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

777 remittancesreview.com

different parts of a software system are

interconnected with one another.

The structure of a program may be represented

graphically with the help of component-based

approaches. UML diagrams are one kind of

diagram that may be used, but there are other

methods as well, such as more interactive

representations i.e. heat maps and node-link

diagrams. Software architects may benefit from

visualization approaches since they allow them to

better comprehend the software's architecture and

behavior. Architectural patterns in software may

be found using pattern detection methods. The

model-view-Controller pattern is one example of

a very popular design pattern that can be found

here. Developers may benefit from pattern

detection methods since they illuminate the

architecture of a software application and point

out potential trouble spots. One way to examine

how information moves through an application is

through the use of dependency graph approaches.

Data corruption and loss are only two examples

of problems that these methods may help

engineers spot. Developers may benefit from data

flow analysis approaches by better

comprehending the architecture of the program

and how it interacts with other systems. A better

software system that is simpler to maintain and

enhance over time is the result of these methods

being used by developers.

The continuation of this study may go in any

one of the few directions in the years to come.

The following are some of them:

1. Handling Non-Functional Requirements:

Numerous existing approaches concentrate

on restoring the functional architecture of

software systems; moreover, non-functional

specifications such as performance, security,

and scalability are gaining significance.

Therefore, comprehensive strategies that

really can restore non-functional architecture

are necessary.

2. Non-Code Artefacts Recovery: However,

there is an increasing need to take into

account numerous different non-code

artefacts as pieces of knowledge for

architecture recovery. Some examples of

these non-code artefacts include deployment

architectures, database schemas, and system

logs. Often these architecture recovery

techniques presently concentrate their

attention on code artefacts.

3. Investigating Various Architectural Patterns

and Designs: It is necessary to conduct

additional research into the different

architectural patterns and styles currently in

use, in addition to gaining a deeper

comprehension of the methods by which

these architectural motifs can be recognized

and restored from implementation artefacts.

4. Architecture Recovery Tool: In order to turn

the entire process of clustering into a usable

tool that researchers, computer programmers,

and practitioners can use to conduct

additional experiments and gather feedback

for use in future enhancements. Integration

with production tools and processes can

improve the efficiency of architecture

recovery. This includes things such as bug

trackers, code repositories, and continuous

deployment pipelines.

5. Improved Accuracy: Researchers are looking

into ways to improve the precision of

architecture recovery techniques. One

possibility is to implement machine learning

algorithms, while another is to consider

additional sources of information such as

supporting documents, developer remarks,

and test cases. Both approaches are currently

under investigation.

These problems underscore how important it

is to have adequate documentation, use modular

design that is well-structured, and have a

systematic approach to modelling software

architecture.

V. CONCLUSION

This research provides a survey of the various

recovery techniques for software architecture.

The results show that component-based software

architecture recovery techniques can be

automated. The techniques that were proposed

were predominantly based on the mining of the

modules and the connector that were engaged in

the architects of the software system. This was

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

778 remittancesreview.com

accomplished through the proof of identity of the

standard and changeable packages and classes. In

the beginning of the software's development

process, neither the architectural style nor the

design pattern were given much thought.

The goal of the Software Architecture

Recovery research area is to inevitably decipher

the structure of a software application from its

improvement artefacts such as codebase, binary

code, and implementation configurations. Over

the course of the last few decades, this area of

study has developed and matured, yielding a

variety of methods and techniques that have been

implemented in working software systems.

The process of developing software could be

significantly altered as a result of Software

Architecture Recovery's potential to make a big

difference in the field. For this area of study to

continue to advance, it will be necessary to

conduct research on both new methods and tools,

as well as a thorough understanding of the

obstacles and limitations posed by previously

established approaches. It is possible, with these

efforts, to make Source Code Recovery a practice

that becomes more efficient and widely used, and

it is also possible to assist architects and

developers in better understanding and managing

the structure of complex systems of software.

REFERENCES

[1] T. Lutellier et al., “Measuring the

Impact of Code Dependencies on Software

Architecture Recovery Techniques,” IEEE

Trans. Softw. Eng., vol. 44, no. 2, pp. 159–

181, 2018, doi: 10.1109/TSE.2017.2671865.

[2] S. Scalabrino, G. Bavota, C.

Vendome, M. Linares-Vasquez, D.

Poshyvanyk, and R. Oliveto, “Automatically

Assessing Code Understandability,” IEEE

Trans. Softw. Eng., vol. 47, no. 3, pp. 595–

613, 2021, doi: 10.1109/TSE.2019.2901468.

[3] J. Garcia, I. Ivkovic, and N.

Medvidovic, “A comparative analysis of

software architecture recovery techniques,”

2013 28th IEEE/ACM Int. Conf. Autom.

Softw. Eng. ASE 2013 - Proc., pp. 486–496,

2013, doi: 10.1109/ASE.2013.6693106.

[4] P. Behnamghader, D. M. Le, J.

Garcia, D. Link, A. Shahbazian, and N.

Medvidovic, “A large-scale study of

architectural evolution in open-source

software systems,” Empir. Softw. Eng., vol.

22, no. 3, pp. 1146–1193, 2017, doi:

10.1007/s10664-016-9466-0.

[5] J. Misra, K. M. Annervaz, V.

Kaulgud, S. Sengupta, and G. Titus,

“Software clustering: Unifying syntactic and

semantic features,” Proc. - Work. Conf.

Reverse Eng. WCRE, pp. 113–122, 2012,

doi: 10.1109/WCRE.2012.21.

[6] J. Lee, T. Kim, and S. Kang,

“Recovering Software Product Line

Architecture of Product Variants Developed

with the Clone-and-Own Approach,” Proc. -

2020 IEEE 44th Annu. Comput. Software,

Appl. Conf. COMPSAC 2020, pp. 985–990,

2020, doi:

10.1109/COMPSAC48688.2020.0-143.

[7] A. Nicolaescu and H. Lichter,

“Behavior-based architecture reconstruction

and conformance checking,” Proc. - 2016

13th Work. IEEE/IFIP Conf. Softw. Archit.

WICSA 2016, pp. 152–157, 2016, doi:

10.1109/WICSA.2016.25.

[8] K. S. Lee and C. G. Lee, “Identifying

Semantic Outliers of Source Code Artifacts

and Their Application to Software

Architecture Recovery,” IEEE Access, vol. 8,

pp. 212467–212477, 2020, doi:

10.1109/ACCESS.2020.3040024.

[9] K. Yang, J. Wang, Z. Fang, P. Wu,

and Z. Song, “Enhancing software

modularization via semantic outliers

filtration and label propagation,” Inf. Softw.

Technol., vol. 145, p. 106818, May 2022, doi:

10.1016/J.INFSOF.2021.106818.

[10] A. Shahbazian, Y. Kyu Lee, D. Le, Y.

Brun, and N. Medvidovic, “Recovering

Architectural Design Decisions,” Proc. -

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

779 remittancesreview.com

2018 IEEE 15th Int. Conf. Softw. Archit.

ICSA 2018, pp. 95–104, 2018, doi:

10.1109/ICSA.2018.00019.

[11] A. Saydemir, M. E. Simitcioglu, and

H. Sozer, “On the Use of Evolutionary

Coupling for Software Architecture

Recovery,” 2021 Turkish Natl. Softw. Eng.

Symp. UYMS 2021 - Proc., pp. 0–5, 2021,

doi: 10.1109/UYMS54260.2021.9659761.

[12] I. Candela, G. Bavota, B. Russo, and

R. Oliveto, “Using cohesion and coupling for

software remodularization: Is it enough?,”

ACM Trans. Softw. Eng. Methodol., vol. 25,

no. 3, pp. 1–28, 2016, doi: 10.1145/2928268.

[13] J. Garcia, I. Krka, C. Mattmann, and

N. Medvidovic, “Obtaining Ground-Truth

Software Architectures,” pp. 901–910, 2013.

[14] J. Favre, A. Team, and L. Lsr-imag,

“Ca c Oph o Ny : Metamodel-Driven

Software Architecture Reconstruction,”

2004.

[15] M. A. D. Storey, K. Wong, and H. A.

Muller, “Rigi: A visualization environment

for reverse engineering,” Proc. - Int. Conf.

Softw. Eng., pp. 606–607, 1997, doi:

10.1109/ICSE.1997.610428.

[16] J. Michaud, M. A. Storey, and H.

Müller, “Integrating information sources for

visualizing Java programs,” IEEE Int. Conf.

Softw. Maintenance, ICSM, pp. 250–259,

2001, doi: 10.1109/ICSM.2001.972738.

[17] C. Cho, K. S. Lee, M. Lee, and C. G.

Lee, “Software Architecture Module-View

Recovery Using Cluster Ensembles,” IEEE

Access, vol. 7, pp. 72872–72884, 2019, doi:

10.1109/ACCESS.2019.2920427.

[18] Y. Wang, P. Liu, H. Guo, H. Li, and

X. Chen, “Improved hierarchical clustering

algorithm for software architecture

recovery,” Proc. - 2010 Int. Conf. Intell.

Comput. Cogn. Informatics, ICICCI 2010,

pp. 247–250, 2010, doi:

10.1109/ICICCI.2010.45.

[19] Z. Wen and V. Tzerpos, “An

effectiveness measure for software clustering

algorithms,” Progr. Comprehension, Work.

Proc., vol. 12, pp. 194–203, 2004, doi:

10.1109/wpc.2004.1311061.

[20] P. Andritsos, P. Tsaparas, R. J. Miller,

and K. C. Sevcik, “LIMBO: Scalable

clustering of categorical data,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol.

2992, pp. 123–146, 2004, doi: 10.1007/978-

3-540-24741-8_9.

[21] B. Pourasghar, H. Izadkhah, A.

Isazadeh, and S. Lotfi, “A graph-based

clustering algorithm for software systems

modularization,” Inf. Softw. Technol., vol.

133, p. 106469, 2021, doi:

10.1016/j.infsof.2020.106469.

[22] X. Kong, B. Li, L. Wang, and W. Wu,

“Directory-Based Dependency Processing

for Software Architecture Recovery,” IEEE

Access, vol. 6, pp. 52321–52335, 2018, doi:

10.1109/ACCESS.2018.2870118.

[23] D. Link, P. Behnamghader, R.

Moazeni, and B. Boehm, “Recover and

RELAX: Concern-oriented software

architecture recovery for systems

development and maintenance,” Proc. - 2019

IEEE/ACM Int. Conf. Softw. Syst. Process.

ICSSP 2019, pp. 64–73, 2019, doi:

10.1109/ICSSP.2019.00018.

[24] D. Link, K. Srisopha, and B. Boehm,

“Study of the utility of text classification

based software architecture recovery method

relax for maintenance,” Int. Symp. Empir.

Softw. Eng. Meas., 2021, doi:

10.1145/3475716.3484194.

[25] O. Maqbool and H. A. Babri,

“Bayesian learning for software architecture

recovery,” 2007 Int. Conf. Electr. Eng. ICEE,

2007, doi: 10.1109/ICEE.2007.4287309.

[26] A. Shatnawi, A. D. Seriai, and H.

Sahraoui, “Recovering software product line

architecture of a family of object-oriented

Remittances Review

August 2024,

Volume: 9, No: 4, pp.770-780

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

780 remittancesreview.com

product variants,” J. Syst. Softw., vol. 131,

pp. 325–346, 2017, doi:

10.1016/j.jss.2016.07.039.

[27] S. Chardigny, A. Seriai, M. Oussalah,

and D. Tamzalit, “Extraction of component-

based architecture from object-oriented

systems,” 7th IEEE/IFIP Work. Conf. Softw.

Archit. WICSA 2008, pp. 285–288, 2008,

doi: 10.1109/WICSA.2008.44.

[28] C. Lima, W. K. Assunção, J.

Martinez, W. Mendonça, I. C. Machado, and

C. F. Chavez, “Product line architecture

recovery with outlier filtering in software

families: the Apo-Games case study,” J.

Brazilian Comput. Soc., vol. 25, no. 1, 2019,

doi: 10.1186/s13173-019-0088-4.

[29] R. Deshmukh., S. Murarka, R.

Agarwal, D. Datta, and P. Borhade,

“Software Architecture Recovery

Techniques,” Int. J. Eng. Adv. Technol., vol.

9, no. 4, pp. 856–859, 2020, doi:

10.35940/ijeat.d8018.049420.

[30] P. Wang, J. Yang, L. Tan, R. Kroeger,

and J. D. Morgenthaler, “Generating precise

dependencies for large software,” 2013 4th

Int. Work. Manag. Tech. Debt, MTD 2013 -

Proc., pp. 47–50, 2013, doi:

10.1109/MTD.2013.6608678.

[31] M. Shtern and V. Tzerpos,

“Clustering Methodologies for Software

Engineering,” Adv. Softw. Eng., vol. 2012,

pp. 1–18, 2012, doi: 10.1155/2012/792024.

[32] T. Lutellier et al., “Comparing

Software Architecture Recovery Techniques

Using Accurate Dependencies,” Proc. - Int.

Conf. Softw. Eng., vol. 2, pp. 69–78, 2015,

doi: 10.1109/ICSE.2015.136.

