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Abstract  

Land Use Land Cover (LULC) changes are among the most significant human-induced 

modifications to Earth's surface and immediate environment. In district Swat, rapid urbanization, 

population growth, deforestation, agricultural expansion, and increased built environment have 

altered LULC dynamics, leading to a rise in Land Surface Temperature (LST). This study aims to 

evaluate LULC variations and their impact on LST in the Swat district from 2002 to 2022. The 

analysis primarily utilizes satellite imagery from the USGS Earth Explorer website, covering the 

years 2002 (Landsat-5 TM), 2012 (Landsat-7 ETM), and 2022 (Landsat 9 OLI/TIRS). LST was 

derived using thermal band 6 for Landsat 5 TM and Landsat 7 ETM, and band 10 for Landsat 9 

OLI/TIRS. The analysis suggests that agricultural land expanded from 577.6 km² to 1117.8 km² 

(2002-2022), built-up areas increased from 362.3 km² to 875.1 km² (2002-2022) and vegetation 

cover decreased from 1322.2 km² to 513.4 km² (2002-2022). Similarly, the snow cover reduced 

from 1567.2 km² to 953.6 km² (2002-2022) and water bodies shrunk from 405.0 km² to 292.4 km² 

(2002-2022). On the other hand, the LST analysis reveals that a significant increase of 12.49°C in 

maximum LST over the 20 years. This rise in LST is primarily attributed to the expansion of built-

up areas, including houses, roads, and concrete structures, which tend to absorb more solar 

radiation. These findings highlight the substantial impact of LULC changes on the local climate 

in district Swat over the past two decades. 

Keywords: Satellite images, LST, LULC, solar radiation, built-up areas and agricultural land  

Introduction     

The rapid expansion of urban areas accelerates land transformation processes and leads to swift 

increases in surface temperature over relatively brief periods (Guha et al., 2020; Nasir et al., 2022). 
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Land use refers to the human-driven conversion of natural environments into artificial landscapes, 

such as grasslands into industrial zones, residential areas, or agricultural fields (Roberts et al., 

2015). Changes in land use and land cover (LULC) are considered among the most significant 

human-induced alterations to the Earth and its surrounding environment (Patra et al., 2018). 

LULC changes result from complex interactions between various factors operating at both global 

scales (e.g., climate change, international markets) and local levels (e.g., topography, soil fertility, 

population growth) (Msofe, 2019; Negash et al., 2021). This transformation, driven by 

urbanization, has substantial negative impacts on both local and global environments (Khan et al., 

2019). Furthermore, human-induced LULC alterations contribute to increases in land surface 

temperature (LST) (Rahaman et al., 2020; Song et al., 2018). 

In the present day, LULC is changing at an unprecedented rate and intensity, surpassing any 

previous period in history (Namugize et al., 2018). Urban (built-up) areas, which constituted 

merely 3% of land cover in 1950, are projected to expand dramatically to 66% by 2050, driven by 

significant population growth and rural-to-urban migration patterns (Mohajerani et al., 2017). 

Land Surface Temperature (LST) is a measure of the heat emitted from the Earth's surface 

(Rajendran & Mani, 2015). It plays a crucial role as a climate variable intrinsically linked to global 

warming, while also serving as a key factor in local and regional surface energy and heat balance 

dynamics (Liu et al., 2021; Zou et al., 2020). 

Among South Asian nations, Pakistan has undergone particularly rapid urbanization (Kedir et al., 

2016). The effects of global warming are already manifesting in Pakistan through rising 

temperatures and alterations in land cover, posing numerous severe threats to the country (Amber 

and Knee, 2021). Reports indicate a significant expansion of built-up areas, from 3,969.04 hectares 

in 1998 to 6,147.06 hectares in 2018. Notably, Land Surface Temperature (LST) was observed to 

be higher in densely populated urban centers compared to surrounding rural areas. The LST for 

built-up regions increased from 42.8°C in 1998 to 46.9°C in 2018. 

Research has revealed that the Swat district experienced a dramatic transformation over 40 years 

(1968-2007), with nearly 50% of its forest cover disappearing, giving way to a substantial increase 

in agricultural land and urban development (Qasim et al., 2013; Qasim et al., 2011). In light of 
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these trends, the current study aims to investigate the changes in land use and land cover patterns 

and their subsequent impact on land surface temperature in the Swat district over a two-decade 

period from 2002 to 2022. 

Materials and Methods 

 Study Area 

Swat is one of the districts in Khyber Pakhtunkhwa, province having a total area of 5,337 km2. 

District Swat is geographically situated between 34° 30' to 35° 50' North latitude and 72° 10' to 

73° 10' East longitude. The district Chitral is located in the North, Shangla district in the East, 

Malakand and Buner districts are located on the southern side and the Western side is bordered by 

districts Dir Lower and Dir Upper (Figure 1). Swat is the natural geographic area surrounded by 

River Swat. With an altitude ranging between 710 to 5910 meters above sea level and lush green 

forests, alpine pastures, and snow-clad mountains.  

 

 

 

 

 

 

 

 

\ 
Figure 1: The location of study area map, district Swat 
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Data Sources 

The study is mainly based on remote sensing data which was acquired from various sources. 

Landsat-5 TM, Landsat-7 ETM and Landsat 9 OLI/TIRS data for the years 2002, 2012 and 2022 

was obtained from the USGS Earth Explorer website (http://earthexplorer.com). Landsat 5 

Thematic Mapper (TM) of 2002, Landsat 7 Enhance Thematic Mapper Plus (ETM+) of 2012, and 

Landsat 9 Operational Land Imager and Thermal Infrared Sensor (OLI/TIS) of 2022 were used to 

produce the land use land cover (LULC) map of three periods. The Landsat images of three periods 

were also used to calculate the LST. The characteristics of Landsat-5 TM, Landsat-7 ETM, and 

Landsat 9 OLI/TIRS data are shown in Table 1. 

Table 1 Remote Sensing Data Used in the Study Area 

Date of acquisition  Sensor Path/row Thermal band  Spatial resolution Source 

05/26/2002 TM 151/35,36 6 30*30/120 

U
S

G
S

 

E
ar

th
 

E
x
p
lo

re
r 

05/21/2012 ETM+ 151/35,36 6 30*30/60 

05/17/2022 OLI/TIRS 151/35,36 10 30*30/100 

 Source: https://earthexplorer.usgs.gov/scene/metadata/full 

Image Preprocessing  

Landsat image is helpful to provides information of the earth surface at various resolutions. Despite 

the challenges posed by low revisit frequency and cloud contamination (Zhou & Zhong, 2020), 

the acquired Landsat images (2002, 2012, and 2022) were enhanced through geometric and 

radiometric corrections to improve their quality. To ensure accurate analysis, a comprehensive pre-

processing approach was employed. This included robust image registration techniques (Feng et 

al., 2019), image resampling via layer stacking (Islam et al., 2018), and atmospheric correction 

(Rani et al., 2017). These steps enabled the creation of high-quality images suitable for land 

use/land cover (LULC) change and land surface temperature (LST) analysis. The detailed 

methodology is illustrated in Figure 2. 

http://earthexplorer.com/
https://earthexplorer.usgs.gov/scene/metadata/full
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LULC Change Analysis 

The classification procedure was completed in the Arc GIS 10.8 environment using the maximum 

likelihood classifier approach from satellite images that have been obtained. The obtained images 

were categorized into different LULC classes including agricultural land, vegetation, barren land, 

built-up area, snow cover, and water bodies (Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Illustrating objectives the suggested methodology employed to achieve the study 

objectives 
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Table 2 Description of LULC classes used in the study area 

LULC Classes Description  

Agricultural land Areas used for cultivation, both annual and perennials crops  

Vegetation The area under forests and Plants is considered collectively. 

Barren land 
Areas with little or no vegetation cover, open lands, eroded gullies, and 

exposed rocks 

Build-up area 
Areas allotted for permanent residential, commercial areas, institutions and 

infrastructures  

Snow 
The solid form of water that precipitates from the atmosphere to the earth 

covers the earth permanently or temporarily.  

Water bodies 
Any significant accumulation of water on the surface of the earth in the 

form of lakes, streams, rivers, etc.   

 

Accuracy assessment  

Accuracy assessment is very crucial for measuring the effectiveness of an image during its 

classification. It is helpful to show the performance of a model regarding its weaknesses and 

strengths (Moisa et al., 2022). The Confusion matrix was applied to assess the accuracy of the 

classification. The confusion matrix consists of columns and rows representing the values and 

reality of classification from the ground (Chen & Zhang, 2017). The Kappa coefficient (Khat) 

measures the extent of agreement between two maps, taking into account all elements of the 

confusion matrix (Mishra et al., 2019), as expressed in Equation 1. Besides, the user accuracy, 

which was calculated as the ratio of correctly classified pixels to the total number of pixels in the 

same class, as described by Congalton (1991) in Equation 2, was also calculated. Producer 

accuracy was calculated as the ratio of correctly classified pixels to the total number of pixels in 

the same class, as explained by Disperati and Virdis (2015) in Equation 3. Furthermore, the overall 

accuracy was calculated to provide a comprehensive evaluation. The overall accuracy is the 

number of correctly classified pixels represented by diagonal lines of the error matrix (Equation 

4) (Pouliot et al., 2014).  
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Khat =   
(𝑇𝑜𝑡𝑎𝑙∗𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)−𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 (𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙∗𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑞𝑢𝑎𝑟𝑒𝑑−𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 (𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙∗𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙)
 ………..     (1) 

User accuracy = 
𝐶𝑢𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎 𝑟𝑜𝑤 

𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎 𝑟𝑜𝑤 
∗ 100 ……………………….      (2) 

Producer accuracy = 
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎 𝑐𝑙𝑎𝑠𝑠 

𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑙𝑢𝑚𝑛 
∗ 100 …………………...     (3) 

Overall accuracy =
𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 

𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 
∗ 100 ……………….               (4) 

LULC change detection  

The magnitude of land use/land cover change was assessed based on three key factors: the amount 

of changed area, the extent of change, and the rate of change. Building on previous studies by 

Abraham et al. (2016), Abebe et al. (2019), and Elias et al. (2019), the rate of change was calculated 

using Equation 5 to quantify the magnitude of changes that occurred between the specified periods. 

This calculation provided valuable insights into the dynamics of land use/land cover 

transformations. This is also referred to as the Single land Use Dynamic Degree (SLUDD) 

developed by Liu, et al., (2002), and the Comprehensive Land Use Dynamic Degree (Xiulan, & 

Yuhai, (2011). The SLUDD can be calculated through Equation 5: 

𝑆𝐿𝑈𝐷𝐷 =
𝑈𝑏 − 𝑈𝑎

𝑈𝑎
×

1

𝑇
× 100 … … … … … … … … … … . . 𝐸𝑞. 5 

𝑊ℎ𝑒𝑟𝑒 𝑈𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑡𝑦𝑝𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 (2002, 2012),  
𝑈𝑏 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡ℎ𝑎𝑡 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑡𝑦𝑝𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑟 𝑡𝑖𝑚𝑒 (2012𝑎𝑛𝑑 2022) 

𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝑙𝑎𝑡𝑒𝑟 

 

According to Quan et al., (2015) it is a measure of the variation of conversion of land use land 

cover class into other LULC classes. They referred to SLUDD as an appropriate measure of the 

percentage annual change in particular land use land cover class. 

Retrieval of LST 

The Land Surface Temperature (LST) was calculated using Landsat Thermal Infrared (TIR) 

imagery. Specifically, band 6 was utilized for Landsat 5 Thematic Mapper (TM) and Landsat 7 

Enhanced Thematic Mapper Plus (ETM+), while band 10 was used for Landsat 9 Operational Land 
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Imager/Thermal Infrared Sensor (OLI/TIRS) satellite images. These sensors captured the heat 

emitted from the Earth's surface, providing thermal data in the form of digital numbers (DN). 

According to Dener and Alves (2016), these DN values can be converted to brightness 

temperature, and radiance, enabling the calculation of LST from remotely sensed satellite data. 

 

 

Conversion of Digital Numbers to top of Atmosphere (TOA) Spectral Radiance 

Digital number (DNs) stores thermal data in the Landsat sensor and deliver a manner of 

representing signifying pixels that have not yet been calibrated and converted into radiance units 

(Aik et al., 2020). To calculate, LST (Eq. 6) is the first process that must be followed for Landsat 

8 Thermal infrared sensor TIRS to convert DN to radiance.  

Lλ = (ML * Q Cal) + AL...………………………… (6) 

Where “Lλ” represents the top of atmosphere (TOA) spectral radiance (Wm-2 sr-1𝛍m-1). ML is the 

band-specific multiplicative rescaling factor from the metadata (Radiance_mult_band x, where x 

is the band number). AL is the band-specific additive rescaling factor from the metadata 

(Radiance_add_band x, where x is the band number). Q Cal is the quantized calibrated standard 

product pixel values (DN).  

 For converting the Digital number (DN) to radiance (Eq. 7 and 8) for Landsat 5TM and 

Landsat 7ETM+, the gain and bias method was used (citation).  

Lλ = gain * Qcal + bias …………………………… (7) 

𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 =
𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛

𝑄𝐶𝐴𝐿𝑀𝑎𝑥 − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛
× (𝑄𝐶𝐴𝐿 − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛) + 𝐿𝑚𝑖𝑛 … … … … . (8) 

 

𝑊ℎ𝑒𝑟𝑒, 

             𝐿𝑀𝐴𝑋 =  𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑎𝑛𝑑 6 =  15.303 

             𝐿𝑀𝐼𝑁 =  𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐵𝑎𝑛𝑑 6 =  1.238 

𝑄𝐶𝐴𝐿𝑀𝐴𝑋 =  𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒 𝐶𝐴𝐿 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑎𝑛𝑑 6 =  255 

𝑄𝐶𝐴𝐿𝑀𝐼𝑁 =  𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒 𝐶𝐴𝐿 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐵𝑎𝑛𝑑 6 =  1 

Conversion of Radiance to Brightness Temperature  
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After the DNs are converted to radiance, the thermal band’s spectral radiance should be 

converted to brightness temperature (Eq. 9). This is usually accomplished using thermal 

constants delivered in the metadata file (Aik et al., 2020). 

                                             B𝑇 = 𝐾2 + ln (
𝐾1

𝐿𝑦
+ 1) − 273.15 … … … … … … … . . 9 

                                       B𝑇 =  𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝐿𝑌 =  𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑖𝑛 𝑤𝑎𝑡𝑡𝑠 (𝑚𝑒𝑡𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒)  

𝐾1 =  𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1 (607.76) 

𝐾2 =  𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 2 (1260.56)    

Land Surface Emissivity Estimation using NDVI 

The NDVI was used to categorize the distribution of vegetation cover and their greenness as well. 

Consequently, it also explores the transformation of NDVI into values associated with the cover 

portion using empirical relationships with vegetation indexes as possible basis functions (Tomar 

et al., 2013). 

NDVI is calculated using Eq. 10 

NDVI = 
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
 ………………………………… (10) 

Where NDVI is the normalized difference Vegetation Index, NIR is the near-infrared band and R 

is the red band. From the NDVI values acquired, the next step in obtaining Land Surface 

Emissivity (LSE), mainly the calculation of the proportion of vegetation index (Pv), was 

achieved.  

 

Calculating the Proportion of Vegetation (Pv) 

The proportion of vegetation (Pv) is calculated according to Eq. 11 

PV =  (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

2

…………………… (11) 

Where Pv represents the proportion of vegetation, which is calculated according to Eq. 11. 

 

Land Surface Emissivity (LSE) Assessment  

Land surface emissivity (ε) is significant to estimates of LST because Dutta (2015) and Ogunode 

(2017) the proportionality factor to predict emitted radiance and represents the efficiency of 
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transmitting thermal energy across the surface into the atmosphere represented by land surface 

emissivity. Sobrino et al., (2004) state that the emissivity is calculated using (Eq. 12).      

𝜀 = 0.004𝑃𝑉 + 0.986 ------ (12) 

The calculated radiant surface temperature will be corrected for emissivity using Eq. 13 

−273.15…………Eq 13 

Where LST is the land surface temperature (in Kelvin); and TB is the radiant surface temperature 

(in Kelvin). λ is the wavelength of emitted radiance (11.5 μm). ρ is h × c/σ (1.438×10-2 mK); h is 

the Plank’s constant (6.26×10 -34 J s); c is the velocity of light (2.998×108 m/s); σ is Stefan 

Boltzmann’s constant (1.38×10 -23 J K -1); and ε is the land surface emissivity. 

Result and Discussion  

LULC Change Analysis 

The major change in LULC was detected by using the method of Maximum Likelihood 

classification. LULC was classified into six different classes i.e. vegetation cover, agricultural 

land, barren land, water bodies, snow cover, and build-up area for the three periods of 2002, 2012, 

and 2022 as shown in Table 4. Agricultural land dominates the most as compared to other LULC 

classes which cover 577.6 km2, 940 km2, and 1117.8 km2 for the years 2002, 2012, and 2022 

respectively. On the other hand, vegetation cover shows a high decline in area due to expansion in 

agricultural land which is supported by Tezera et al. (2015) and Ebabu et al. (2019).  Moreover, it 

is observed that the reduction in forest land may be the degradation of forests because cultivated 

land expansion as a consequence of rapid population growth is favored by (Olika & Iticha, 2019)  

LULC Change Matrix   

In this research study, the maximum likelihood classification was used to identify LULC change 

from 2002 - 2022. Major conversion of different LULC changes in district Swat is depicted in 

Table 4 and Figure 3. The change in LULC was calculated for vegetation cover which converted 

to agricultural land by 61.1% (808.8 km2). The classification of land use/land cover (LULC) 

change images highlights significant transformations between 2002 and 2022. The most prominent 

change was the conversion of forest land to agricultural land. Additionally, snow cover decreased 
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substantially, from 1567.2 km2 in 2002 to 953.6 km2 in 2022, resulting in a net loss of 613.6 km2. 

Furthermore, the area under water also showed a decline, decreasing from 405 km2 to 292.4 km2, 

representing a loss of 112 km2 over the study period. 

Table 3: District Swat Land Use Land Cover Change, (2002-2022) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land use Area (Km²) 

(2002) 

Area (Km²)          

(2012) 

Area (Km²) 

(2022) 

Change 

(2002-2022) 

Agricultural land  577.6 940 1117.8 540.2 

Vegetation  1322.2 695.8 513.4 -808.8 

Barren land 1102.7 1493.4 1585.2 482.5 

Built-up area 362.3 735.2 875.1 612.8 

Snow  1567.2 1127.5 953.6 -613.6 

Water bodies  405.0 345.6 292.4 -112.6 

Total  5,337 5,337 5,337  

Figure 3A shows the LULC of 2002, 3B illustrates the LULC of 2012, and 3C highlights 

LULC of 2022 of district Swat. 
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Rate of LULC Change  

Table 4 summarizes the analysis results, showing the Single Land Use Dynamic Degree (SLUDD) 

dynamics for the period between 2002-2022. The analysis reveals that between 2002 and 2022, 

significant land use changes were observed. The built-up areas increased by 10.29% annually 

between 2002-2012 and 1.90%/year during 2012-2022. The increase in built-up area was rapid 

during 2002-2012 as compared to 2012-2020. Agricultural land increased by approximately 6.27% 

annually between 2002-2012 and 1.89% between 2012-2022. Conversely, the area under 

vegetation decreased by -4.74%/year during 2002-2012 and -2.62%/year during 2012-2020. This 

decline in vegetation cover is attributed to a corresponding increase in agricultural land and barren 

land. Similarly, the barren land increased by 3.54% and 0.61% annually between 2002-2012 and 

2012-2022 respectively. The snow cover also records a steady decrease between the two time 

periods (2002-2012 and 2012-2022) by -2.81% and -1.54% annually. A similar decrease was 

observed in waterbodies which decreased by -1.47% during 2002-2012 and by -1.54% between 

2012-2022. This finding aligns with previous studies by Abebe et al. (2019) and Elias et al. (2019).  

Table 4: District Swat Single Land Use Dynamic Degree (SLUDD), (2002-2022) 

 

LULC 2002-2012 (%age) 2012-2022 (%age) 

Agriculture Land  6.27 1.89 

Vegetation -4.74 -2.62 

Barren land 3.54 0.61 

Built-up Area 10.29 1.90 

Snow Cover -2.81 -1.54 

Water Bodies -1.47 -1.54 
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Accuracy Assessment  

The accuracy assessment for each LULC class over the selected study period is shown in Table 5. 

The LULC accuracy assessment for 2002, 2012, and 2022 years produced an overall accuracy of 

79. 5%, 85.23%, and 72.78% respectively. The Kappa coefficient for the study periods were 57%, 

62%, and 67% respectively. The analysis results demonstrate satisfactory results. 

 

Table 5 Accuracy Assessment of LULC for 2002, 2012 and 2022 

LULC types 

2002 2012 2022 

Producers’ 

accuracy 

(%) 

Users’ 

accuracy 

(%) 

Producers’ 

accuracy 

(%) 

Users’ 

accuracy 

(%) 

Producers’ 

accuracy 

(%) 

Users’ 

accuracy 

(%) 

Agricultural land  75 82.5 81 85.71 75.76 83.33 

Vegetation 77.5 77.5 83.7 80 68.75 73.33 

Barren land 80 80 82.4 80 68.97 66.67 

Built-up area 85.7 75 87.5 88.57 64.71 73.33 

Snow 76.2 80 90.9 85.71 75.00 70.00 

Water bodies 84.6 82.5 86.4 91.41 87.50 70.00 

Overall accuracy 79.5 - 85.23 - 72.78 - 

Kappa coefficient 57 - 62 - 67 - 

 

LST in response to LULC Change  

The maximum LST observed in district Swat was 33.54 °C, 41.78 °C, and 46.03 °C for the years 

2002, 2012, and 2022 respectively (Table 5). The mean LST in the year 2002 was about 16 °C and 

increased to 20. 36 °C and 22.81 °C in 2012 and 2022 respectively. Results show that the southern 

part of the study area experienced high LST whereas the northeastern and northwestern parts of 

the study area experienced low LST (Figure 4A, 4B, and 4C). The highest LST was observed in 
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the low vegetation area, particularly around the build-up area and agricultural land. On the other 

hand, low LST has been found in areas dominated by forest land and snow cover. The LULC has 

a clear influence on LST. (Tan et al., 2020). Our results prove that areas with higher NDVI 

experienced lower LST, i.e. negative correlation. Thus, LULC has a significant effect on LST. 

(Guha & Govil, 2020; Kumar & Shekhar, 2015). LULC change and unwise use of natural resources 

are the key driving forces for the increasing trends of maximum temperature.  

LST can be significantly impacted by the presence or lack of greenery. Forest cover, including 

trees and plants, offers shade, transpires water, and cools the region around them. Due to 

diminished cooling effects, regions with less greenery have greater LST. LST is influenced by the 

topography, including elevation, aspect, and slope. Low atmospheric pressure, which absorbs less 

of the earth's radiation's outgoing rays, causes high altitudes to have lower LST. In contrast, low-

lying places like valleys absorb more solar radiation due to a high air density, which raises LST.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4A Shows the LST of 2002, 4B illustrates the LST of 2012, and 4C highlights the 

LST of 2022 of district Swat. 
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Table 6 Maximum, Minimum, and Mean LST of district Swat between 2002 and 2022  

Year 2002 2012 2022 LST change (2002-2022) 

Maximum LST (℃) 33.54 41.78 46.03 12.49 

Minimum LST (℃) -0.66 -1.05 -0.41 0.25 

Mean LST (℃) 16.44 20.36 22.81 6.37 

 

Relationship between LST and LULC Conversion 

Land surface heating is the cumulative effect of LULC change on global atmospheric warming. 

The decline of vegetation cover driven by agricultural expansion in the study area substantially 

increases LST. Results show that higher LST values are recorded when vegetation cover and 

agricultural land converted into other land uses (Table 7). According to the analysis, changes in 

LULC have a significant impact on LST. For instance, the average LST was increased by 10.1°C 

when agricultural land was converted to the built-up area during the study period (2002 - 2022). 

Similarly, barren land was converted to a built-up area, as a result, the LST increased to 8.4 °C 

from 2002 - 2022.  The agricultural land increased in 2022 by converting the barren land of 2002, 

hence the average LST also changed to 1.2 °C. Moreover, the average LST also rises to 3 °C by 

converting vegetation cove to agricultural land. Finally, the study reveals that the least change in 

LST 1.2 °C was reported when barren land was converted to agricultural land, while the largest 

LST  10. 1 °C is found when agricultural land is changed to built-up areas.   

 

Table 7 LULC Change (2002-2022) and Corresponding LST from (2002-2022) 

S.No LULC 2002 LULC 2022 LST 2002 LST 2012 LST 2022 Change 

2002-22 
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1 Agricultural Land Agricultural Land 25.70 30.30 33.70 8.00 

2 Agricultural Land Agricultural Land 25.90 30.40 33.80 7.90 

3 Agricultural Land Agricultural Land 27.10 31.60 35.62 8.52 

4 Agricultural Land Agricultural Land 26.00 27.50 30.90 4.90 

5 Agricultural Land Built-Up 26.10 30.60 39.00 12.90 

6 Agricultural Land Built-Up 26.10 30.60 40.00 13.90 

7 Agricultural Land Built-Up 25.90 30.40 41.00 15.10 

8 Agricultural Land Built-Up 25.60 30.10 42.00 16.40 

9 Barren Land Barren Land 29.70 34.20 37.30 7.60 

10 Barren Land Barren Land 29.30 34.20 37.60 8.30 

11 Barren Land Barren Land 28.70 33.20 36.60 7.90 

12 Barren Land Barren Land 28.90 33.40 36.80 7.90 

13 Barren Land Built-Up 29.60 34.10 40.00 10.40 

14 Barren Land Built-Up 29.50 34.00 41.00 11.50 

15 Barren Land Built-Up 29.00 33.50 42.00 13.00 

16 Barren Land Built-Up 28.60 33.10 39.80 11.20 

17 Barren Land Agricultural Land 27.90 32.40 29.00 1.10 

18 Barren Land Agricultural Land 27.60 32.10 28.90 1.30 

19 Barren Land Agricultural Land 28.00 32.50 30.00 2.00 

20 Built-Up Built-Up 32.00 38.90 42.10 10.10 

21 Built-Up Built-Up 32.50 38.90 42.30 9.80 

22 Built-Up Built-Up 31.70 38.80 42.20 10.50 

23 Built-Up Built-Up 31.80 38.70 42.10 10.30 

24 Snow Snow 1.20 0.00 1.00 -0.20 

25 Snow Snow 1.30 -1.00 1.00 -0.30 

26 Snow Snow 1.20 -1.00 0.00 -1.20 

27 Snow Snow 0.00 -1.00 1.00 1.00 

28 Vegetation Vegetation 27.80 32.30 35.70 7.90 

29 Vegetation Vegetation 26.70 31.30 34.70 8.00 

30 Vegetation Vegetation 26.70 31.20 34.50 7.80 

31 Vegetation Vegetation 26.60 31.30 34.70 8.10 

32 Vegetation Agricultural Land 27.00 31.50 31.00 4.00 

33 Vegetation Agricultural Land 27.10 31.60 29.80 2.70 

34 Vegetation Agricultural Land 27.30 31.80 29.80 2.50 

35 Vegetation Agricultural Land 26.70 31.20 29.00 2.30 

36 Water Bodies Water Bodies 7.00 11.50 14.80 7.80 

37 Water Bodies Water Bodies 7.00 11.50 14.90 7.90 

38 Water Bodies Water Bodies 6.30 10.50 13.90 7.60 

39 Water Bodies Water Bodies 7.40 11.60 15.10 7.70 
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5.7 Conclusion 

In this research, an analysis of the impact of LULC dynamics on LST using geospatial methods in 

district Swat was examined. For this purpose, the Landsat datasets have been considered to 

examine LULC changes and monitor the LST of the study area from 2002-2022. The analysis 

found that agricultural land dominates all LULC classes, which is grown by 540.2 km2 followed 

by build-up area raised by 513 km2 during the study period. The main factor is the increase of 

agricultural land and built-up areas, as well as the decline of vegetative land and snow cover. 

During the study period, around 808.8 km2 of vegetative land and 613.6 km2 of snow cover were 

converted to agricultural land, built-up area, and other land uses.   

The highest temperature was calculated at 33.54 °C, 41.78 °C and 46.03 °C for the years 

2002, 2012, and 2022 respectively, while the low temperature was found -0.66 °C, -1.05 °C and -
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0.41 respectively for the years 2002, 2012 and 2022. The southern part of the district experienced 

high temperatures due to the built-up environment, whereas the north-eastern and north-western 

parts of the study area recorded low temperatures because of the presence of vegetation and snow 

cover. Thus we conclude that unplanned and unauthorized built-up areas and degradation of 

vegetation cover are key factors in increasing LST in the study area. 
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