

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1527

 Received: 19 May 2024, Accepted: 25 July 2024

DOI: https://doi.org/10.33282/rr.vx9i2.66

Abstract

Edge computing provide an effective way to handle the latency oriented Internet of Things (IoT)

applications by leveraging the resources of the processing nodes inside the edge network. The device

heterogeneity and highly dynamic environment of edge network causes the failures to happen frequently

which can result to a service failure or system unavailability. The system availability can be ensured by

providing efficient fault tolerance mechanism to IoT applications in general and special for real-time

applications as failures can degrade the performance or stop the processing resulting in problems for the

user or a real-time system. This article highlights the different fault tolerance mechanisms including

reactive and proactive mechanisms for different processes executing on the edge nodes inside the edge

network. And for edge computing we have covered both single edge node execution and distributed

application execution. In addition, future research directions are discussed for the researchers working

on edge computing.

Index Terms—Distributed computing, Edge Computing, Fault tolerance, Internet of Things, Reliability.

Handling Fault Tolerance in Edge Computing Using Reactive and

Proactive Methods

Muhammad Mudassar
 *

[1]

, Uzair Ishtaiq
[1]

, Muhammad Zaheer Akhtar
[1]

[1]

Computer Science Department, COMSATS University Islamabad Vehari Campus,

Vehari, Pakistan
 *
Corresponding author muhammad.mudassar@cuivehari.edu.pk

mailto:muhammad.mudassar@cuivehari.edu.pk

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1527

I. INTRODUCTION

 The evolution of internet and development of powerful

smart devices helped to build a bigger network known as

Internet of Things (IoT). The IoT is providing an ease to

individuals by presenting lot of applications including smart

cities, home automation, smart security surveillance, and

smart health care. A user can enjoy these IoT applications at

any time of the day and from any place. The works such as

micro datacenter [1] [2], mobile edge computing [3], cloudlet

[4], and fog computing [5] has are presented by research

community to process IoT data generated by the end devices

closer to user space. Because the cloud computing is not

always effective for data processing, especially, when data is

produced at the edge of the network. The edge computing is

identical to fog computing [6], but edge computing is mostly

things oriented, while the fog is infrastructure oriented. In an

edge computing environment the things can act as data

producers and consumers (sensors/actuators), and at the edge

of network (edge nodes or smart devices) can perform

computations for the application tasks as shown in Fig. 1.

Smart devices referred to as nodes in edge computing can

offer storage and cache of data, processing of data (smart

devices), offload their computation on requirement, and

distribute incoming requests to the cloud. This allows

real-time processing to happen, and the time critical

applications can be deployed inside the edge network to

perform decision making without any delay. Additionally,

instead of transmitting entire data to the cloud, the edge

device can filter the incoming data to obtain some initial

useful information, thus extenuating the stress in backhaul

links, resulting in efficient bandwidth utilization.

 Usually, smart devices (edge nodes) are co-located in an

area during a period, intimating these devices can potentially

collaborate to process a resource demanding, real-time, delay

sensitive, big task. The distributed processing of a

compute-intensive task (e.g., face recognition, object

detection, geographical navigation, object tracking and

artificial intelligence) on the different devices in the edge

network closer to end devices influence in lower latency.

This distributed processing on edge devices can enhance the

computing capabilities of edge network and help to face

challenges like efficient resource utilization, limited

bandwidth, reduce overall delay, scalability and fault

tolerance. The resource leveraging at the edge of an IoT

network can enhance the robustness and dynamicity for the

edge computing environment.

Fig. 1: Edge computing environment in IoT

Fault tolerance is important for many IoT applications in

general and special for real-time applications because failures

can result in disrupt of a critical activity, which can be

dangerous for a user or a real-time system. The devices in the

edge network of IoT systems are deployed in an individual

with different capabilities and requirements. The lack of

redundancy plan for smart devices and gateways during their

deployment phase makes fault tolerance very important issue

for the edge computing environment. The need for a reliable

fault tolerance system reduces the risks to a minimal. For the

edge computing fault tolerance should be dynamic, which

retains the connected systems together, endure reliability, and

availability for the overall system executing an IoT

application.

The rapid advancements in edge computing have

significantly benefited IoT applications by providing users

with quicker results while maintaining quality of service

(QoS). However, ensuring service reliability and availability

remains a challenge for both service providers and end users.

The distributed, decentralized, and dynamic nature of edge

computing, coupled with the heterogeneity of edge devices,

can lead to various errors and failures in the edge network,

resulting in performance degradation. The key types of faults

in edge computing are summarized below:

 Device faults: These include failures such as node

crashes, limited service availability due to low power,

and hardware issues like CPU, memory, storage, or

sensor/actuator malfunctions. Other problems include

communication port failures, devices going out of range,

and lack of hardware support.

 Network faults: Examples include link failures,

network partitioning, congestion, communication errors,

timeouts, packet loss, and out-of-range errors due to

device mobility.

 Services faults: These occur when specific services are

unavailable on edge nodes due to resource shortages,

software issues, or deadlocks caused by physical or

external world dependencies.

 Other faults: Issues such as unsupported

migration/offloading, environmental hazards, and

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1528

sensor/actuator mismatches fall into this category.

Failures in any system can lead to service disruptions or

complete shutdowns. In edge computing, partial failures are

more common, such as a single device or service failing,

which makes centralized fault management impractical. A

decentralized fault tolerance mechanism can mitigate these

challenges, improving system efficiency and ensuring

reliability and availability while minimizing service

disruptions [7].

This paper makes following contributions:

 It will provide an overview of IoT applications and

their key properties.

 It provides a comprehensive study of distributed

application execution in edge computing

environment.

 Provide a comprehensive study of fault tolerance

techniques and their importance.

 An effective and to the point study of different

methods of fault tolerance used in the edge/fog. A

through discussion of each technique, faults and errors

covered, and their likely causes on edge side

processing.

 Along the understanding provided by the paper and

discussions about challenges and solutions, a future

research direction is provided.

The objective is to provide insight to exiting

methodologies used for fault-tolerant solutions, and still what

challenges needed to be tackled. To best of our knowledge

studying fault tolerance for edge nodes based on their

resources and propertied is the recent one in the recent years.

II. BACKGROUND AND BASIC CONCEPTS

In this section we recall the basics and features of IoT

applications. Latterly, we will review the edge computing

environment. Finally, we will provide an overview of current

efforts to process tasks distributed in the edge computing

environment.

A. IoT Application Features

The Internet of Things (IoT) refers to the network of smart

phones, smart machines, medical implants, and other

physical objects having sensing/actuation, computing,

storage and communication capabilities, this has empowered

people and applications to share real-time information to

each other and to the physical world [8]. IoT projected to

bring together billions of smart devices and smart things, by

linking them like the internet done so far with information

and computers. This organization of smart objects will enable

new forms of interaction among things and people. With the

growth of IoT an increasing number of IoT applications is

observed, and these applications covering a variety of

scenarios, including smart cities, smart transportation, smart

grid, security surveillance and smart health care [9 –11].

IoT branded by huge set of distributed objects termed as

‘‘things’’ with limited storage and processing capacity

aiming to provide efficiency, reliability, and privacy [12].

However, typical IoT applications demand mobility support,

location-awareness, high availability, geo-distribution, and

low latency [13].

Most of the IoT applications are composed of independent

and distinct modules, which can easily be deployed on

separate compute nodes, where the computations can be done

on the nodes in the edge or at cloud [14]. In a usual IoT

application, part of the business logic is offloaded to the edge

of network which results reduce communication overhead,

latency and increase application robustness [15]. Such IoT

applications are frequently processed distributed on low cost

nodes connected to sensors, and some compute nodes at

cloud.

Another property of IoT application and devices is that

they are generating huge data. This big data can be very

fruitful if processed and analyzed correctly on time. The

typical big data processing techniques prefer to use cloud

computing resources as these are huge set of resources, but

for an IoT environment using cloud resources from end user

devices results in delay, high bandwidth consumption.

Hence, this scenario is not suitable solution for applications

requiring real-time analysis. In the literature [5] [16] it is

widely acknowledged that cloud computing is not viable for

most of the IoT applications requiring real-time processing,

for such applications edge computing could be used as an

alternative, this will help real-time processing and reduce

networks usage.

Based on the characteristics of IoT applications, several

key features are identified:

 Real-time interaction: Many IoT applications require

real-time interaction, such as in healthcare, traffic

monitoring, or security systems.

 Low latency: Timely communication and processing are

crucial for improving QoS and meeting essential

requirements.

 Geographical distribution: IoT deployments often

span large areas to serve both stationary and mobile

users.

 Support for mobility: Mobility is critical for

applications that require communication with mobile

devices or serve users on the move.

 Location awareness: Identifying object positions is

essential for applications like security and surveillance

systems.

 Fault-tolerant: Efficient fault-tolerant mechanisms are

needed to address device failures or unavailability.

 High Task Demand: Continuous data streams from end

devices necessitate high-end processing for some IoT

tasks.

 High communication required: Applications such as

video streaming or social networking often require

significant data exchange.

 Device Heterogeneity: IoT applications must operate

across a wide variety of devices with differing hardware

and software configurations.

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1529

B. Edge Computing Environment

In edge computing, the processing is performed at the edge

of network on different devices such as smart phones, smart

sensor nodes with processing attached to them, wearables

devices, and on-board units. The data analytics and

knowledge generation can be accomplished on these edge

nodes removing the need for a centralized system [17]. Edge

computing excelled the technology world due to its

tremendous performing competences in terms of providing

real-time analytics, cost effective processing, high

scalability, reduced delay and latency while offering an

improved quality of service (QoS) [11]. Edge computing

technology that suggests to empower the network edge will

reform numerous fields like education, healthcare, planning

and management of city area services, e-commerce and social

networks.

Edge can be defined as any computing resource or a

network device capable to process data from source to cloud.

For example, a smart mobile phone can act as edge between

user and cloud to process user applications, a gateway device

(network device) in a smart home is an edge node between

home appliances and cloud. The principle of edge computing

is that computing should performed be in closeness of data

sources and at the edge of the network. This will help to

address concerns of the latency requirement of IoT

applications, fulfill battery power limitation, bandwidth

saving. The data privacy and security can also be achieved.

The edge computing environment allows computing at the

vicinity of data sources at edge of the network. This results in

numerous benefits when compared to the cloud based

computing. Some early results from the research findings

reveal the potential benefits of edge computing. Researchers

constructed a framework to run face recognition application

in [6], and declared response time decreased from 900 to 169

ms by pushing computations to edge of the network. Ha et al.

[18] used cloudlet technology to offload the executing tasks

for wearable cognitive support; the overall improvement in

response time between 80 and 200 ms is being claimed.

Furthermore, the energy consumption improvement is

obtained by 30% to 40% by cloudlet offloading. Clonecloud

in [19] combines several factors like partitioning, job

migration, and on-demand instantiation of partitioned tasks

between mobile node and cloud, and they showed that their

proposed methodology results in reduction of 20% of running

time and energy.

In an edge computing environment, a design by Vallati et

al. [20] achieves a remarkable reduction in latency and

promises the security of locality information. Smart city

solution designed by [21] uses edge computing for the smart

city application that can effectively identify certain

dangerous events related to a city environment, such as

terrorist threats, natural disasters, fabricated disasters, etc.

Research work in [22] and [23], proposed to designed an

architecture based on edge computing to address several

network-related matters like an efficient offloading scheme

to reduce computation complexities in vehicular technology.

Table 1: Comparison of computing characteristics for IoT

applications

Characteristic Edge

computing

Mobile

cloud

Cloud

Application

latency

Low

(Milli Sec

)

Medium

(S-M)

High (M-H)

Bandwidth Very low Medium High

Response

time

Low High High

Resources Limited

processing

and

storage

Medium

computatio

n and

storage

Ample

computation

and storage

Scalability High Medium Low

Energy

depletion

Low Medium High

Quality of

Service (QoS)

High Medium Medium

Deployment Dist. &

Decent.

Centralized Centralized

We have presented a comprehensive analysis of different

contributions of edge computing across different fields by

plentiful researchers certifying edge computing to be a truly

reliable and available computing system, in an efficient way

and using decentralized manner. We have provided specifics

advantages of edge computing over other similar domains

used to process IoT applications; a comparison is given in

Table 1. We are providing a comparative analysis of the

various characteristics related to computing when performed

in edge computing, mobile cloud computing and cloud

computing. It shows that edge computing is better than other

similar approaches used for processing IoT applications.

C. Distributed Processing in Edge Computing Environment

The execution environment of the edge computing tries to

execute application tasks locally near to the user space before

processing at cloud, resulting in decreased network overhead

consequences, application delay, data security and privacy

matters. Comparing the plentiful of resources at the cloud

processing nodes in the edge network are low power devices

and heterogeneity assassinated with them, along with device

mobility. Executing resource intensive IoT applications on

individual edge nodes can hamper the quality of service

(QoS) and user satisfaction. However, distributed execution

on the smart devices available in the proximity can

successfully execute a resource demanding, real-time,

latency-oriented task by dividing its workload among

available devices. This will allow the applications to take

advantage from the edge computing environment as well.

Research exist suggesting to combine edge computing

resources including Cloudlet [24], femtoclouds [25] and Fog

computing [6]. The clustering concept in Femtoclouds is

based on using dedicated controllers while following a

centralized mode [26], which can bottleneck the centralized

computing entity resulting in services degradation. Research

work in [27] proposed clustering methodology for mobile

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1530

edge computing (MEC) by using a graph-based approach,

their methodology tries to handle most of the

communications at the edge to limit the overall network

traffic. MEC clusters are formed by segregating geographical

areas restricting the communication inside a cluster resulting

in cutting load to the cloud.

To leverage computing resources of edge nodes in an edge

computing environment, mobile edge clouds [28], are

proposed to coordinate numerous edge devices for resource

intensive applications that are difficult to execute

successfully on single edge device. Firework [31] leverages

mobile devices and the cloud to process big tasks, it also

combines different edge nodes to accomplished big data

processing tasks cooperatively. Authors in [32] proposed a

distributed wireless surveillance system, their approach

prioritizes video frames relevant to query performed by user,

and achieves maximum objects required by the query and at

same time decreasing the cost incurred for wireless

bandwidth. Researchers in [33] proposed an open-source

framework named as OpenFace, their framework can be used

for face recognition at a real-time as well as it can perform

tracking operation by using edge computing.

III. FAULT TOLERANCE TECHNIQUES

Fault tolerance is extremely important for edge computing

to provide reliable services to the IoT applications executing

in edge computing environment. Different fault tolerance

methodologies are used for identifying different faults and

handling these faults in the system that may happen due to

device faults, network faults, services faults or any other

faults. Handling a fault efficiently results in robustness of the

system. Different fault tolerance approaches are used in the

literature can be categorized as reactive or proactive

approaches as shown in Fig.2.

Fig. 2: Fault tolerance techniques for the edge computing

A. Reactive Fault Tolerance

The reactive techniques are primarily used to reduce the

effect of failure after it happens in the system. Some reactive

fault tolerance techniques are explored in following after a

thorough review of literature related to distributed systems,

cloud and IoT systems. These techniques are cost effective

and can be fruitful for the edge computing environment.

Replication: In replications based fault-tolerant syste

critical parts (e.g. process, data, and communication paths) of

the system are replicated using redundancy techniques, and

when the working system fails, the backup takes over to keep

the system working [34]. A task can continue its processing

in presence of failures or errors until there exist a replica in

the system.

Checkpoint and Rollback: In checkpointing and roll

back technique, the current state of the system is periodically

stored to a backup node known as checkpoint [35]. This

checkpoint information at later used for rollback the

computations after failure of the node. The checkpoint file

includes environment variables, process state, values of

registers and other useful information to restore the system to

a stable state [36].

Process Level Redundancy: The process level

redundancy is applied where deploying hardware related

fault tolerance techniques become more expensive. This

method compares processes to ensure accurate execution and

it generates a set of redundant processes for each of the

application process [37].

Table 2 presents a comparison of different features for

each of the mentioned technique.

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1531

B. Proactive Fault Tolerance

This methodology tries to avoid from faults and errors to

occur. Cause of faults are determined at prior and a substitute

component is placed to keep the system smooth execution.

Following an overview is provided for different proactive

approaches.

Services Migration: A service or node is observed

continuously and pre-copy service/VM migration is

performed based on some predefined criteria to avoid a

failure or an error [38].

Load Balancing: This methodology is used to balance the

load of machines between different available machines when

it exceeds a certain perimeter [39].

Scale Out: Identifying the bottleneck node and then

scaling the application by dividing the workload and

increasing the processing nodes to ensure the application

smooth working in case of node approaches to a bottleneck

[40].

Offloading: a terminology frequently used in IoT and

edge computing environments. Offloading a task to a remote

server assure to bridge the gap between limited processing

capability of edge node and high computation requirements

of a resource intensive IoT applications [15], [70].

IV. FAULT TOLERANCE FOR EDGE COMPUTING

ENVIRONMENT

Designing a reliable, efficient and effective fault-tolerant

system for the edge computing is a vital issue, primarily due

to heterogeneity and large diversity present among edge

devices, networks and methodologies used for data

processing [42]. The significant point is to keep IoT

application operational if any component of the IoT system

goes off or faulty. A fault-tolerant system should provide

availability and reliability [34]. Availability is concerned

with the system that it is ready to deliver its functionality

during defined period, while reliability refers to property of

the system to function unbrokenly provided a specific time

interval.

Here at first we will provide review of fault tolerance

methodologies used for individual devices in the edge

computing environment. Afterwards, we will discuss in detail

about fault tolerance for the distributed edge computing

environment.

A. Fault Tolerance for Individual Device in Edge

Computing

1) Reactive Approaches

The process of replication adds redundancy in the system,

and when smart devices are used as edge nodes the

redundancy can be increased by utilizing devices in the

vicinity. Fault tolerant health monitoring system is discussed

in [43] it uses the concept of redundant devices and

implements an enhanced gateway for fault tolerance.

According to this research work device preserves a consistent

view by duplicating the services a failure can be recovered

within a short interval without any external interference.

The research work [44] proposed to use an agent-based

architecture for IoT by following a hierarchical architecture,

to ensure reliability and fault tolerance. They have used the

mobile agent to monitor the resources and network. The data

replication at edge of the network helps to provide the

reliability, a redirection is performed when a failure happens.

The possible level for redirection is among cloud, fog, mist or

dew. To handle unexpected faults, the agent will get the

priority index for all applications executing on the failed edge

node and checks for available nodes at the same level once

find the application migration will be performed and

connection rerouting is done. In [45] authors discussed the

fault tolerance and reliability concerns for the fog computing

to support smart city applications. Fault tolerance is achieved

using a replica of services in the fog, upon failure of a fog

node the services that are processed by this node are replaced

by similar service available on another working fog node

available in the locality.

Some research proposed to build energy-efficient

fault-tolerant approach for specific devices in IoT by

checkpointing the program execution data to stable storage

on the same device [46], [47]. Main point is to store selected

states of a program to reduce the time overhead involved in

writing checkpoint data to Non-Volatile Memory (NVM);

they have used a well-known algorithm “max-flow min-cut”

on the data flow model of the program. Their focus is on fault

recovery for a single device.

Edge devices face resource contention making it tough to

handle IoT applications especially during the disasters, for

Table 2 : Comparison of different techniques used for fault-tolerant system

Comparison

property

Replication Checkpoint and rollback Process level redundancy

Functioning Create a separate replica of

important entities

Store working state to stable

place for recovery

Create a set of redundant

processes

Performance Depends on number of

replicas, less replicas high

performance

Checkpointing interval and file

size, efficient for low frequency

and small size

Decreases as frequency of fault

and repair increases

Fault handling More number of replicas more

faults are tolerable

Depends on efficient chickening

scheduling mechanism

Depends on scaling number of

redundant processes

System

consistency

More replicas can cause

problem to system consistency

More consistent if global

checkpointing is used

Process redundancy to easily

schedule process on hardware

Cost effective Increase cost with number of

replicas increased

Cost effective solution Enhancing process level

redundancy need more resources

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1532

situations like this fault tolerance is must required in order to

cope with the situation,\a distributed task offloading scheme

is provided by [41] to ensure fault tolerance for mobile edge

computing networks. Their approach reduces task execution

time and system energy by using multi-agent proximal

optimization algorithm. The system is suitable for failure

scenarios occurred during services to meet the task

requirements.

A checkpointing mechanism known as Distributed

Multi-Threaded Check Pointing (DMTCP) offers a

methodology for transparent checkpointing, this technique

performs checkpoint/restart without any change to original

code of the application or operating system, it can be adapted

for IoT applications [48]. The scene here represents a partial

view of the global state is check pointed, and after failure

occurs a new scene in the form of a process resumed from a

checkpoint file.

2) Proactive Approaches

Research work in [49] proposes an intelligent framework

that is based on semantic reasoning. They have proposed to

use checkpointing mechanism to handle more flexibly an IoT

system, where gateways are installed to collect data and

connect to cloud for user application. They handled

dynamicity, which can occur due to new services or mobility

by means of a checkpointing methodology, hence, migration

of the software can be performed from one gateway to

another gateway. This will help in cases such as

transportations, logistics, or applications where devices need

to change their physical position to some other place or city.

Additionally, this will also help when the gateway device has

limited resources in terms of memory, processing, battery

power, and other resources.

Authors in [50] have proposed a microservices based fault

tolerance framework to provide real-time and predictive fault

tolerance support to IoT systems. Their framework uses two

microservices to provide reactive and proactive fault

tolerance. One microservice “Real-Time FT” uses complex

event processing (CEP) and analyzes incoming streams of

data for quick error recovery. The second one named

“Predictive FT”, which uses machine learning techniques to

allow the system to learn and identify when a fault begins or

likely to start due to similar prior learned experiences and

mitigate the future faults. This will ensure the proactive

approach.

Authors in [68] provided a modified (m, n)-fault tolerance

strategy named as M-MNFT, their strategy is different from

others is that their method take in to account failure of the

edge server, moreover their approach selects some other edge

base stations available redundantly to provide task migration

reliability, this is based on the reduced relative distance fact

between the source and destination edge server wile sending

the request this will mitigate impact of the failure of the edge

base station on QoS during the task transfering.

B. Fault Tolerance for Distributed Edge Computing

The resource intensive big tasks can also enjoy benefits of

edge computing in terms of locality processing with reduced

latency and lesser network traffic by distributing the

processing on the available nodes in the edge network.

However, providing failure handling will become crucial for

such a scenario. Different approaches have potential to

provide fault tolerance for the distributed edge computing

including checkpointing, replication, offloading and other

methodologies discussed in Section 3, as shown in Figure 3.

For the smart devices present in the edge network with

limited resources these techniques with modification can

result in an efficient fault-tolerant system for distributed edge

computing environment. In following, we will discuss

different methodologies and systems used by the research

community to provide fault tolerance for the distributed edge

computing.

Cluster formation among devices in IoT to execute a task

efficiently for a given application, the clustering helps in

device collaboration and helps in prolonging overall network

lifetime [32]. One common methodology used to solve the

fault-tolerant problem for clustering is to use dominate set

clustering [51 – 53], where it is tried to find dominate set

inside a specific network thus every node of the network is

within k hops to the nodes present in the dominate set.

LEACH [54] have proposed a distributed algorithm to elect a

cluster head (CH) based on energy level of each node in

comparison to neighbors, the cluster head could be switched

as energy changes or a head node fails to help with load

balance and provide fault tolerance.

Fig.3: Fault tolerance methodologies for distributed edge

computing environment

All of these involve the extra overhead of cluster formation

and management, which is an extra burden on the cluster

head. The benefit of a centralized methodology is that it can

get lot of information that is precise and a system that is more

powerful. Among the centralized techniques, research work

in [55] tries to attain fault tolerance for clusters by allocating

nodes to some existing gateway devices by following a

heuristic based algorithm.

In edge computing main concern is with distributed and

decentralized patterns with heterogeneous devices. The

framework in [56] optimizes the fault tolerance for service

based IoT applications in virtualized wireless sensor

networks, with an emphasis on heterogeneity present in

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1533

networks. The benefits of distributed methodologies mainly

reside on that it could better adjust to the mobility of smart

devices used as edge nodes, and better scalability [51]. Data

replication is a promising technique to preserve valuable

sensed data in a distributed network. DRAW [57] offers a

fully distributed data replication technique by replicating data

hop-by-hop for IoT systems. This guarantees maximum data

availability even under high node failure rate, but in a limited

node environment, the number of distinct replicas of data that

can be stored in the network decreases. It also suffers the

overhead of extra messages transferred between nodes to

create replicas on these nodes.

To ensure fault tolerance and automated recovery can be

performed by using existing well-known technologies can

also be used like Containers, Kubernetes, and Apache Kafka.

CEFIoT presents and architecture for a fault-tolerant system

to execute IoT applications in small edge clusters and cloud

[58]. They used Apache Kafka for data replication solution

and Kubernetes for fault-tolerant management to provide

on-the-fly dynamic reconfiguration of the processing array to

handle failures.

Crystal provides an easy abstraction for fog application

development to build a sustainable distributed fog computing

application [59]. Their implementation of crystal using

MapReduce framework achieved fault tolerance for

distributed processing over heterogeneous, unreliable, fog

nodes. They also showed to reduce overall latency by

processing data close to the source.

Designing an efficient fault-tolerant system also involves

investigating the reliability parameters of computing devices

in the distributed system. The reliability and availability

modeling is a very important requirement to ensure robust

design and operations. A fault-tolerant and energy efficient

framework is proposed for remote storage of data and

processing of tasks under a dynamic network topology of a

mobile cloud [60]. They used a k-out-of-n reliability

mechanism for distributed computing of mobile cloud to

partition data and object to store on different nodes, until k or

more out of n nodes are working a failure can be recovered.

Fault tolerance using the redundancy technique is used to

meet high reliability and availability requirement of SAN

[61], they have evaluated the reliability of mesh SAN by

using a binary decision diagrams.

Fault tolerance can be achieved for IoT through virtual

service composition, where using single service executing on

single devices with backup devices for each other [62]. There

exists natural redundancy of services across different devices

available at office, home, and different scenarios; this should

be exploited to provide fault tolerance [63]. Research work in

[64] proposes a fault-tolerant platform for smart home

applications, mainly concentrating on link failure. It provides

fault-tolerant event transfer of sensor and actuation

commands in the presence of link failure and network

partitions. An IoT based architecture for health care

environment with fault tolerance is presented in [43], their

approach considers network fault tolerance by using backup

routing between nodes and advanced service mechanisms to

ensure connectivity in case of error or a failure to a

connection.

A decentralized distributed fault tolerance methodology is

presented in [7]. This research work at first presented a

methodology for edge node group formation to execute a

resource intensive task in parallel and distributed on the

nodes in the group. This will help to achieve the application

latency requirements. They have calculated the edge node

reliability parameters based on device local properties, and

used these reliability calculations to provide an efficient fault

tolerance methodology. The fault tolerance methodology

replicates process and data on the set of neighbor nodes to

ensure the availability and reliability parameters calculated

previously.

Authors in [65] provided a distributed fault tolerant system

to handle dynamic IoT environment. A strip data structure is

designed to manage replicated services; this provides a

redundancy abstraction for service peers. Each device

maintains consistent view of replicated services on strip. The

heartbeat protocol and manipulation of strip in distributed

manner allows to recovery from failure. The research work in

[66] present the implementation of a platform to ensure

mobility and reliability to computational tasks executing in

mobile cloud platforms. Replication is used for fault

tolerance and by placing redundant processing on different

nodes is achieved in a distributed system. They have also

handled easy migration of tasks executing in the access

network and provided the necessary functions.

The table 3 provides a detailed comparison of different

methodologies and frameworks used for fault tolerance in the

IoT edge computing environment. The different features are

compared with focus on network approach followed as

centralized or decentralized, it is clear that most of the

distributed fault tolerance research works have followed a

centralized methodology and a fewer has the decentralized

one. The other feature compared is about which technique is

followed for making the backup in the system. Replication

and checkpointing techniques are massively used by the

research community to design a fault tolerance for the edge

computing environment. Most of the literature have not

considered the device heterogeneity that is a key property of

devices present in the edge network. A very few works have

calculated the reliability parameters. Most of the techniques

are concerned to provide fault tolerance to the process and

data of an IoT application.

Table 3: A comparison of fault tolerance approaches for IoT systems

Literature Distributed Approach Consider

heterogeneity

Supports Reliability

Measures

Technique Description

Energy

[46]

No I No Process

and data

No CP Support single device failure in IOT

Mobility No D No Process No CP Support mobility of gateway device

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1534

[49] and data

IoT/M2M

[65]

Yes D No Services No RP Automatic recovery of failed service

without user interventions

Mobile

cloud [60]

Yes C No Process

and data

Yes RP Support dynamic network topology

Mesh

SAN [61]

Yes C No Communi

cation

Yes RD Ensure link reliability of SAN

Hybrid

[67]

Yes C No Process No Hybrid Use reactive and proactive policies

for FT

Smart

city [45]

Yes D Yes Service No RP Consider failure of fog node to

provide FT to smart city applications

FaaS [29] Yes C Yes Microserv

ice

No CP Use function as a service (FaaS) and

checkpointing for long running

functions

DRAW

[57]

Yes D No Data No RP Increase data replication to keep IoT

application working

Crystal

[59]

Yes D Yes Process &

communic

ation

No RD Framework for designers to follow

MapReduce functionality on crystals

Resilience

[30]

Yes CS Yes Process No CP Restore process and interaction with

physical world of devices in failure

Legend: C=centralized, D= Decentralized, I=Individual, CS= Client-Server, CP=checkpointing, RP= Replication,

RD=Redundancy

V. FUTURE DIRECTIONS

Edge computing, being in its infancy stage, has already

attracted the research community and IoT industry, and it is

predicted to be the major driving force for the

latency-oriented processing. The fault tolerance in edge

computing environment still has a number of challenges due

to its architecture.

A. Offloading

An efficient offloading model is required for processes

executing on the edge nodes. This will help to handle

individual edge node faults due to low power and processing

resource limitations of an edge node. The offloading

approach requires optimization in terms of performance in

the real-time scenario.

B. Optimized Resource Allocation with Fault Tolerance

The fault tolerance system has to consider the resource

allocation optimizations to achieve an effective reliable

fault-tolerant system. The device heterogeneity has to be

handled while the resources allocation is performed, this will

result in task allocation optimization and based on the

available resources of a node a task can finish well in time

based on the available resources of the device. This will result

in fewer task failures.

C. Fault Tolerance and Decentralized Methodology

The nature of edge computing is distributed and

decentralized, hence, if the fault tolerance methodology

follows the fault handling using a decentralized mode based

on individual device properties it can result in an efficient

system.

D. Reliability Measurements

The fault tolerance system should be based on proper

reliability measures. This can be achieved by measuring the

individual node failure probabilities, and other related

parameters like device failure rate, and meat time between

failures (MTBF).

E. Energy Efficiency

An efficient fault tolerance system that can significantly

achieve energy efficiency at same time. Extending cloud to

the edge of the network will involve deploying edge devices

closer to the user, the more devices deployed more energy

will be required. A fault tolerance system considering the

energy of devices is required. For this opting an adaptive

checkpointing mechanism can be a viable solution.

F. Fault Tolerance for Limited Devices

Due to mobility property and resource limitations, devices

in the edge network might be inadequate to provide backup

for every entity of the IoT system. An efficient fault tolerance

system is required that should select the backup techniques

based on the available resources in the edge network, and

should be dynamic with respect to available resources present

in the edge network.

CONCLUSION

The edge computing could help to achieve latency

requirements of the applications by executing them closer to

the user at edge of network. Failures are inevitable in edge

nodes due to their mobility property and resources

limitations. To guarantee successful execution of critical IoT

application running in an edge network, fault tolerance

becomes a vital issue. An efficient fault tolerance technique

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1535

helps to achieve reliability and availability in the system

along with handling failure recovery. This survey paper has

provided a detailed overview of edge computing environment

with special focus on the fault tolerance. Various fault

tolerance techniques are outlined, which are being used in the

edge computing environment to design a fault tolerance

system. Further, fault tolerance for the distributed edge

computing environment is reviewed. By comparison of

current methodologies, we have put forth some future

directions for the research initiatives.

 REFERENCES

[1] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel, “The cost of

a cloud: Research problems in data center networks,”

Computer Communications Review, vol. 39, no. 1, January

2009. [Online]. Available:

https://www.microsoft.com/en-us/research/publication/the-cos

t-ofa-cloud-research-problems-in-data-center-networks/

[2] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S.

Saroiu, R. Chandra, and P. Bahl, “Maui: Making smartphones

last longer with code offload,” in ACM MobiSys 2010.

Association for Computing Machinery, Inc., June 2010.

[Online]. Available:

https://www.microsoft.com/en-us/research/publication/mauim

aking-smartphones-last-longer-with-code-offload/

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief,

“Mobile edge computing: Survey and research outlook,” arXiv

preprint arXiv:1701.01090, 2017.

[4] [4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies,

“The case for vm-based cloudlets in mobile computing,” IEEE

Pervasive Computing, vol. 8, no. 4, pp. 14–23, Oct 2009.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog

computing and its role in the internet of things,” in Proceedings

of the first edition of the MCC workshop on Mobile cloud

computing. ACM, 2012, pp. 13–16.

[6] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and

applications,” in 2015 Third IEEE Workshop on Hot Topics in

Web Systems and Technologies (HotWeb). IEEE, 2015, pp.

73–78.

[7] M. Mudassar, Y. Zhai, L. Liao, and J. Shen, “A decentralized

latency-aware task allocation and group formation approach

with fault tolerance for iot applications,” IEEE Access, vol. 8,

pp. 49 212–49 223, 2020.

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet

of things (iot): A vision, architectural elements, and future

directions,” Future Generation Computer Systems, vol. 29, no.

7, pp. 1645 – 1660, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X1

3000241

[9] F. Dalipi and S. Y. Yayilgan, “Security and privacy

considerations for iot application on smart grids: Survey and

research challenges,” in 2016 IEEE 4th International

Conference on Future Internet of Things and Cloud Workshops

(FiCloudW). IEEE, 2016, pp. 63–68.

[10] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P.

Demeester, “City of things: An integrated and

multi-technology testbed for iot smart city experiments,” in

2016 IEEE International Smart Cities Conference (ISC2).

IEEE, 2016, pp. 1–8.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:

Vision and challenges,” IEEE Internet of Things Journal, vol.

3, no. 5, pp. 637–646, Oct 2016.

[12] A. Botta, W. [de Donato], V. Persico, and A. Pescape,

“Integration of ´ cloud computing and internet of things: A

survey,” Future Generation Computer Systems, vol. 56, pp.

684 – 700, 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X1

5003015

[13] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog

computing: A survey,” in Wireless Algorithms, Systems, and

Applications, K. Xu and H. Zhu, Eds. Cham: Springer

International Publishing, 2015, pp. 685–695.

[14] R. Jain and S. Tata, “Cloud to edge: Distributed deployment of

process-aware iot applications,” in 2017 IEEE International

Conference on Edge Computing (EDGE), June 2017, pp.

182–189.

[15] H. Flores, P. Hui, P. Nurmi, E. Lagerspetz, S. Tarkoma, J.

Manner, V. Kostakos, Y. Li, and X. Su, “Evidence-aware

mobile computational offloading,” IEEE Transactions on

Mobile Computing, vol. 17, no. 8, pp. 1834–1850, 2017.

[16] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog

Computing: A Platform for Internet of Things and Analytics.

Cham: Springer International Publishing, 2014, pp. 169–186.

[17] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M.

Mohanty, and C. T. Lin, “Edge of things: The big picture on the

integration of edge, iot and the cloud in a distributed computing

environment,” IEEE Access, vol. 6, pp. 1706–1717, 2018.

[18] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M.

Satyanarayanan, “Towards wearable cognitive assistance,” in

Proceedings of the 12th Annual International Conference on

Mobile Systems, Applications, and Services, ser. MobiSys ’14.

New York, NY, USA: Association for Computing Machinery,

2014, p. 68–81. [Online]. Available:

https://doi.org/10.1145/2594368.2594383

[19] H. Gedawy, K. Habak, K. Harras, and M. Hamdi, “An

energy-aware iot femtocloud system,” in 2018 IEEE

International Conference on Edge Computing (EDGE), July

2018, pp. 58–65.

[20] C. Vallati, A. Virdis, E. Mingozzi, and G. Stea, “Mobile-edge

computing come home connecting things in future smart

homes using lte device-todevice communications,” IEEE

Consumer Electronics Magazine, vol. 5, no. 4, pp. 77–83, Oct

2016.

[21] M. Sapienza, E. Guardo, M. Cavallo, G. La Torre, G.

Leombruno, and O. Tomarchio, “Solving critical events

through mobile edge computing: An approach for smart cities,”

in 2016 IEEE International Conference on Smart Computing

(SMARTCOMP), May 2016, pp. 1–5.

[22] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Ave: Autonomous vehicular

edge computing framework with aco-based scheduling,” IEEE

Transactions on Vehicular Technology, vol. 66, no. 12, pp. 10

660–10 675, Dec 2017.

[23] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. ZHANG,

“Mobile-edge computing for vehicular networks: A promising

network paradigm with predictive off-loading,” IEEE

Vehicular Technology Magazine, vol. 12, no. 2, pp. 36–44,

June 2017.

[24] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The

case for vm-based cloudlets in mobile computing,” IEEE

Pervasive Computing, 2009.

[25] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto

clouds: Leveraging mobile devices to provide cloud service at

the edge,” in 2015 IEEE 8th International Conference on Cloud

Computing. IEEE, 2015, pp. 9–16.

[26] K. Habak, E. W. Zegura, M. Ammar, and K. A. Harras,

“Workload management for dynamic mobile device clusters in

edge femtoclouds,” in Proceedings of the Second ACM/IEEE

Symposium on Edge Computing. ACM, 2017, p. 6.

[27] M. Bouet and V. Conan, “Mobile edge computing resources

optimization: A geo-clustering approach,” IEEE Transactions

on Network and Service Management, vol. 15, no. 2, pp.

787–796, 2018.

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1536

[28] N. Fernando, S. W. Loke, and W. Rahayu, “Computing with

nearby mobile devices: A work sharing algorithm for mobile

edge-clouds,” IEEE Transactions on Cloud Computing, vol. 7,

no. 2, pp. 329–343, April 2019.

[29] P. Karhula, J. Janak, and H. Schulzrinne, “Checkpointing and

migration of iot edge functions,” in Proceedings of the 2nd

International Workshop on Edge Systems, Analytics and

Networking, 2019, pp. 60–65.

[30] U. Ozeer, X. Etchevers, L. Letondeur, F.-G. Ottogalli, G.

Salaun, and ¨ J.-M. Vincent, “Resilience of Stateful IoT

Applications in a Dynamic Fog Environment,” in EAI

International Conference on Mobile and Ubiquitous Systems:

Networking and Services (MobiQuitous ’18), New York,

United States, Nov. 2018, pp. 1–10. [Online]. Available:

https://hal.archives-ouvertes.fr/hal-01927286

[31] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data

processing and sharing for hybrid cloud-edge analytics,” IEEE

Transactions on Parallel and Distributed Systems, vol. 29, no.

9, pp. 2004–2017, Sep. 2018.

[32] J. S. Kumar and M. A. Zaveri, “Clustering approaches for

pragmatic two-layer iot architecture,” Wireless

Communications and Mobile Computing, vol. 2018, 2018.

[33] J. Wang, B. Amos, A. Das, P. Pillai, N. Sadeh, and M.

Satyanarayanan, “A scalable and privacy-aware iot service for

live video analytics,” in Proceedings of the 8th ACM on

Multimedia Systems Conference, ser. MMSys’17. New York,

NY, USA: Association for Computing Machinery, 2017, p.

38–49. [Online]. Available:

https://doi.org/10.1145/3083187.3083192

[34] A. Sari, M. Akkaya et al., “Fault tolerance mechanisms in

distributed systems,” International Journal of

Communications, Network and System Sciences, vol. 8, no.

12, p. 471, 2015.

[35] A. Khunteta and K. Praveen, “An analysis of checkpointing

algorithms for distributed mobile systems,” International

Journal on Computer Science and Engineering, vol. 2, 07 2010.

[36] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson,

“A survey of rollback-recovery protocols in message-passing

systems,” ACM Comput. Surv., vol. 34, no. 3, p. 375–408, Sep.

2002. [Online]. Available:

https://doi.org/10.1145/568522.568525

[37] N. Xiong, Y. Yang, M. Cao, J. He, and L. Shu, “A survey on

fault-tolerance in distributed network systems,” vol. 2, 01

2009, pp. 1065– 1070.

[38] V. Medina and J. M. Garc´ıa, “A survey of migration

mechanisms of virtual machines,” ACM Comput. Surv., vol.

46, no. 3, Jan. 2014. [Online]. Available:

https://doi.org/10.1145/2492705

[39] M. Nazari Cheraghlou, A. Khadem-Zadeh, and M. Haghparast,

“A survey of fault tolerance architecture in cloud computing,”

J. Netw. Comput. Appl., vol. 61, no. C, p. 81–92, Feb. 2016.

[Online]. Available:

https://doi.org/10.1016/j.jnca.2015.10.004

[40] M. Mudassar, Y. Zhai, and L. Liao, “Efficient state

management for scaling out stateful operators in stream

processing systems,” Big Data, vol. 7, no. 3, pp. 192–206,

2019, pMID: 30994383. [Online]. Available:

https://doi.org/10.1089/big.2018.0093

[41] H. Zhang et al., "Decentralized and Fault-Tolerant Task

Offloading for Enabling Network Edge Intelligence," in IEEE

Systems Journal, vol. 18, no. 2, pp. 1459-1470, June 2024, doi:

10.1109/JSYST.2024.3403696.

[42] H. Zhang et al., "Decentralized and Fault-Tolerant Task

Offloading for Enabling Network Edge Intelligence," in IEEE

Systems Journal, vol. 18, no. 2, pp. 1459-1470, June 2024, doi:

10.1109/JSYST.2024.3403696.

[43] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,

“Internet of things for smart cities,” IEEE Internet of Things

Journal, vol. 1, no. 1, pp. 22–32, 2014.

[44] T. N. Gia, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and H.

Tenhunen, “Fault tolerant and scalable iot-based architecture

for health monitoring,” in 2015 IEEE Sensors Applications

Symposium (SAS). IEEE, 2015, pp. 1–6.

[45] J. Grover and R. M. Garimella, “Reliable and fault-tolerant

iot-edge architecture,” in 2018 IEEE SENSORS. IEEE, 2018,

pp. 1–4.

[46] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Towards fault

tolerant fog computing for iot-based smart city applications,”

in 2019 IEEE 9th Annual Computing and Communication

Workshop and Conference (CCWC). IEEE, 2019, pp.

0752–0757.

[47] T. Xu and M. Potkonjak, “Energy-efficient fault tolerance

approach for internet of things applications,” in Proceedings of

the 35th International Conference on Computer-Aided Design,

2016, pp. 1–8.

[48] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic,

“Optimizing checkpoints using nvm as virtual memory,” in

2013 IEEE 27th International Symposium on Parallel and

Distributed Processing. IEEE, 2013, pp. 29–40.

[49] F. A¨ıssaoui, G. Cooperman, T. Monteil, and S. Tazi, “Smart

scene management for iot-based constrained devices using

checkpointing,” in 2016 IEEE 15th International Symposium

on Network Computing and Applications (NCA), Oct 2016,

pp. 170–174.

[50] F. A¨ıssaoui, G. Cooperman, T. Monteil, and S. Tazi,

“Intelligent checkpointing strategies for iot system

management,” in 2017 IEEE 5th International Conference on

Future Internet of Things and Cloud (FiCloud). IEEE, 2017,

pp. 305–312.

[51] A. Power and G. Kotonya, “A microservices architecture for

reactive and proactive fault tolerance in iot systems,” in 2018

IEEE 19th International Symposium on” A World of Wireless,

Mobile and Multimedia Networks”(WoWMoM). IEEE, 2018,

pp. 588–599.

[52] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Fault-tolerant

clustering in ad hoc and sensor networks,” vol. 2006, 02 2006,

pp. 68 – 68.

[53] J. Wang, Y. Yonamine, E. Kodama, and T. Takata, “A

distributed approach to constructing k-hop connected

dominating set in ad hoc networks,” 12 2013, pp. 357–364.

[54] J. Wu and H. Li, “On calculating connected dominating set for

efficient routing in ad hoc wireless networks,” in Proceedings

of the 3rd international workshop on Discrete algorithms and

methods for mobile computing and communications, 1999, pp.

7–14.

[55] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,

“Energyefficient communication protocol for wireless

microsensor networks,” in Proceedings of the 33rd Annual

Hawaii International Conference on System Sciences, Jan

2000, pp. 10 pp. vol.2–.

[56] G. Gupta and M. Younis, “Fault-tolerant clustering of wireless

sensor networks,” in 2003 IEEE Wireless Communications and

Networking, 2003. WCNC 2003., vol. 3, March 2003, pp.

1579–1584 vol.3.

[57] O. Kaiwartya, A. H. Abdullah, Y. Cao, J. Lloret, S. Kumar, R.

R. Shah, M. Prasad, and S. Prakash, “Virtualization in wireless

sensor networks: Fault tolerant embedding for internet of

things,” IEEE Internet of Things Journal, vol. 5, no. 2, pp.

571–580, 2017.

[58] W. B. Qaim and O. Ozkasap, “Draw: Data replication for

enhanced data availability in iot-based sensor systems,” in

2018 IEEE 16th Intl Conf on Dependable, Autonomic and

Secure Computing, 16th Intl Conf on Pervasive Intelligence

and Computing, 4th Intl Conf on Big Data Intelligence and

 Remittances Review

June 2024,

Volume: 9, No: 3, pp.1527-1537

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

1537

Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp.

770–775.

[59] A. Javed, K. Heljanko, A. Buda, and K. Framling, “Cefiot: A

fault- ¨ tolerant iot architecture for edge and cloud,” in 2018

IEEE 4th World Forum on Internet of Things (WF-IoT). IEEE,

2018, pp. 813–818.

[60] T. Jeong, J. Chung, J. W.-K. Hong, and S. Ha, “Towards a

distributed computing framework for fog,” in 2017 IEEE Fog

World Congress (FWC). IEEE, 2017, pp. 1–6.

[61] C.-A. Chen, M. Won, R. Stoleru, and G. G. Xie,

“Energy-efficient faulttolerant data storage and processing in

mobile cloud,” IEEE Transactions on Cloud Computing, vol. 3,

no. 1, pp. 28–41, 2014.

[62] [61] L. Xing, M. Tannous, V. M. Vokkarane, H. Wang, and J.

Guo, “Reliability modeling of mesh storage area networks for

internet of things,” IEEE Internet of Things Journal, vol. 4, no.

6, pp. 2047–2057, 2017.

[63] S. Zhou, K. Lin, J. Na, C. Chuang, and C. Shih, “Supporting

service adaptation in fault tolerant internet of things,” in 2015

IEEE 8th International Conference on Service-Oriented

Computing and Applications (SOCA), Oct 2015, pp. 65–72.

[64] D. Terry, “Toward a new approach to iot fault tolerance,”

Computer, vol. 49, pp. 80–83, 08 2016.

[65] M. S. Ardekani, R. P. Singh, N. Agrawal, D. B. Terry, and R.

O. Suminto, “Rivulet: A fault-tolerant platform for smarthome

applications,” in Proceedings of the 18th ACM/IFIP/USENIX

Middleware Conference, ser. Middleware ’17. New York, NY,

USA: Association for Computing Machinery, 2017, p. 41–54.

[Online]. Available: https://doi.org/10.1145/3135974.3135988

[66] P. H. Su, C.-S. Shih, J. Y.-J. Hsu, K.-J. Lin, and Y.-C. Wang,

“Decentralized fault tolerance mechanism for intelligent

iot/m2m middleware,” in 2014 IEEE World Forum on Internet

of Things (WF-IoT). IEEE, 2014, pp. 45–50.

[67] P. Stahl, J. Broberg, and B. Landfeldt, “Dynamic

fault-tolerance and mobility provisioning for services on

mobile cloud platforms,” in Proceedings - 5th IEEE

International Conference on Mobile Cloud Computing,

Services, and Engineering, MobileCloud 2017. Institute of

Electrical and Electronics Engineers Inc., 06 2017, pp.

131–138. [Online]. Available:

http://dx.doi.org/10.1109/MobileCloud.2017.7

[68] M. Nazari Cheraghlou, A. Khadem-Zadeh, and M. Haghparast,

“A new hybrid fault tolerance approach for internet of things,”

Electronics, vol. 8, no. 5, 2019. [Online]. Available:

https://www.mdpi.com/20799292/8/5/518

[69] Y. Li, X. Sun, Y. Xia, P. Chen, Y. Li and Q. Peng, "M-MNFT:

A Novel Modified (m, n)-Fault Tolerance Approach for

Service Migration in Vehicular Edge Computing," 2023 IEEE

International Conference on Software Services Engineering

(SSE), Chicago, IL, USA, 2023, pp. 170-179, doi:

10.1109/SSE60056.2023.00031.

[70] H. Zhang et al., "Decentralized and Fault-Tolerant Task

Offloading for Enabling Network Edge Intelligence," in IEEE

Systems Journal, vol. 18, no. 2, pp. 1459-1470, June 2024, doi:

10.1109/JSYST.2024.3403696.

https://www.mdpi.com/20799292/8/5/518

