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Abstract 

Edge computing provide an effective way to handle the latency oriented Internet of Things (IoT) 

applications by leveraging the resources of the processing nodes inside the edge network. The device 

heterogeneity and highly dynamic environment of edge network causes the failures to happen frequently 

which can result to a service failure or system unavailability. The system availability can be ensured by 

providing efficient fault tolerance mechanism to IoT applications in general and special for real-time 

applications as  failures can degrade the performance or stop the processing resulting in problems for the 

user or a real-time system. This article highlights the different fault tolerance mechanisms including 

reactive and proactive mechanisms for different processes executing on the edge nodes inside the edge 

network. And for edge computing we have covered both single edge node execution and distributed 

application execution. In addition, future research directions are discussed for the researchers working 

on edge computing. 

 

Index Terms—Distributed computing, Edge Computing, Fault tolerance, Internet of Things, Reliability. 
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I. INTRODUCTION 

  The evolution of internet and development of powerful 

smart devices helped to build a bigger network known as 

Internet of Things (IoT). The IoT is providing an ease to 

individuals by presenting lot of applications including smart 

cities, home automation, smart security surveillance, and 

smart health care. A user can enjoy these IoT applications at 

any time of the day and from any place. The works such as 

micro datacenter [1] [2], mobile edge computing [3], cloudlet 

[4], and fog computing [5] has are presented by research 

community to process IoT data generated by the end devices 

closer to user space. Because the cloud computing is not 

always effective for data processing, especially, when data is 

produced at the edge of the network. The edge computing is 

identical to fog computing [6], but edge computing is mostly 

things oriented, while the fog is infrastructure oriented. In an 

edge computing environment the things can act as data 

producers and consumers (sensors/actuators), and at the edge 

of network (edge nodes or smart devices) can perform 

computations for the application tasks as shown in Fig. 1.  

Smart devices referred to as nodes in edge computing can 

offer storage and cache of data, processing of data (smart 

devices), offload their computation on requirement, and 

distribute incoming requests to the cloud. This allows 

real-time processing to happen, and the time critical 

applications can be deployed inside the edge network to 

perform decision making without any delay. Additionally, 

instead of transmitting entire data to the cloud, the edge 

device can filter the incoming data to obtain some initial 

useful information, thus extenuating the stress in backhaul 

links, resulting in efficient bandwidth utilization. 

 Usually, smart devices (edge nodes) are co-located in an 

area during a period, intimating these devices can potentially 

collaborate to process a resource demanding, real-time, delay 

sensitive, big task. The distributed processing of a 

compute-intensive task (e.g., face recognition, object 

detection, geographical navigation, object tracking and 

artificial intelligence) on the different devices in the edge 

network closer to end devices influence in lower latency. 

This distributed processing on edge devices can enhance the 

computing capabilities of edge network and help to face 

challenges like efficient resource utilization, limited 

bandwidth, reduce overall delay, scalability and fault 

tolerance. The resource leveraging at the edge of an IoT 

network can enhance the robustness and dynamicity for the 

edge computing environment. 

 

 
Fig. 1: Edge computing environment in IoT 

Fault tolerance is important for many IoT applications in 

general and special for real-time applications because failures 

can result in disrupt of a critical activity, which can be 

dangerous for a user or a real-time system. The devices in the 

edge network of IoT systems are deployed in an individual 

with different capabilities and requirements. The lack of 

redundancy plan for smart devices and gateways during their 

deployment phase makes fault tolerance very important issue 

for the edge computing environment. The need for a reliable 

fault tolerance system reduces the risks to a minimal. For the 

edge computing fault tolerance should be dynamic, which 

retains the connected systems together, endure reliability, and 

availability for the overall system executing an IoT 

application. 

The rapid advancements in edge computing have 

significantly benefited IoT applications by providing users 

with quicker results while maintaining quality of service 

(QoS). However, ensuring service reliability and availability 

remains a challenge for both service providers and end users. 

The distributed, decentralized, and dynamic nature of edge 

computing, coupled with the heterogeneity of edge devices, 

can lead to various errors and failures in the edge network, 

resulting in performance degradation. The key types of faults 

in edge computing are summarized below: 

 Device faults: These include failures such as node 

crashes, limited service availability due to low power, 

and hardware issues like CPU, memory, storage, or 

sensor/actuator malfunctions. Other problems include 

communication port failures, devices going out of range, 

and lack of hardware support.   

 Network faults: Examples include link failures, 

network partitioning, congestion, communication errors, 

timeouts, packet loss, and out-of-range errors due to 

device mobility.       

 Services faults: These occur when specific services are 

unavailable on edge nodes due to resource shortages, 

software issues, or deadlocks caused by physical or 

external world dependencies.  

 Other faults: Issues such as unsupported 

migration/offloading, environmental hazards, and 
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sensor/actuator mismatches fall into this category.   

Failures in any system can lead to service disruptions or 

complete shutdowns. In edge computing, partial failures are 

more common, such as a single device or service failing, 

which makes centralized fault management impractical. A 

decentralized fault tolerance mechanism can mitigate these 

challenges, improving system efficiency and ensuring 

reliability and availability while minimizing service 

disruptions [7]. 

This paper makes following contributions: 

 

 It will provide an overview of IoT applications and 

their key properties.  

 It provides a comprehensive study of distributed 

application execution in edge computing 

environment.  

 Provide a comprehensive study of fault tolerance 

techniques and their importance. 

 An effective and to the point study of different 

methods of fault tolerance used in the edge/fog. A 

through discussion of each technique, faults and errors 

covered, and their likely causes on edge side 

processing. 

 Along the understanding provided by the paper and 

discussions about challenges and solutions, a future 

research direction is provided. 

 

The objective is to provide insight to exiting 

methodologies used for fault-tolerant solutions, and still what 

challenges needed to be tackled. To best of our knowledge 

studying fault tolerance for edge nodes based on their 

resources and propertied is the recent one in the recent years.  

II. BACKGROUND AND BASIC CONCEPTS 

In this section we recall the basics and features of IoT 

applications. Latterly, we will review the edge computing 

environment. Finally, we will provide an overview of current 

efforts to process tasks distributed in the edge computing 

environment.  

A. IoT Application Features 

The Internet of Things (IoT) refers to the network of smart 

phones, smart machines, medical implants, and other 

physical objects having sensing/actuation, computing, 

storage and communication capabilities, this has empowered 

people and applications to share real-time information to 

each other and to the physical world [8]. IoT projected to 

bring together billions of smart devices and smart things, by 

linking them like the internet done so far with information 

and computers. This organization of smart objects will enable 

new forms of interaction among things and people. With the 

growth of IoT an increasing number of IoT applications is 

observed, and these applications covering a variety of 

scenarios, including smart cities, smart transportation, smart 

grid, security surveillance and smart health care [9 –11]. 

IoT branded by huge set of distributed objects termed as 

‘‘things’’ with limited storage and processing capacity 

aiming to provide efficiency, reliability, and privacy [12]. 

However, typical IoT applications demand mobility support, 

location-awareness, high availability, geo-distribution, and 

low latency [13].  

Most of the IoT applications are composed of independent 

and distinct modules, which can easily be deployed on 

separate compute nodes, where the computations can be done 

on the nodes in the edge or at cloud [14]. In a usual IoT 

application, part of the business logic is offloaded to the edge 

of network which results reduce communication overhead, 

latency and increase application robustness [15]. Such IoT 

applications are frequently processed distributed on low cost 

nodes connected to sensors, and some compute nodes at 

cloud. 

Another property of IoT application and devices is that 

they are generating huge data. This big data can be very 

fruitful if processed and analyzed correctly on time. The 

typical big data processing techniques prefer to use cloud 

computing resources as these are huge set of resources, but 

for an IoT environment using cloud resources from end user 

devices results in delay, high bandwidth consumption. 

Hence, this scenario is not suitable solution for applications 

requiring real-time analysis. In the literature [5] [16] it is 

widely acknowledged that cloud computing is not viable for 

most of the IoT applications requiring real-time processing, 

for such applications edge computing could be used as an 

alternative, this will help real-time processing and reduce 

networks usage. 

Based on the characteristics of IoT applications, several 

key features are identified: 

 Real-time interaction: Many IoT applications require 

real-time interaction, such as in healthcare, traffic 

monitoring, or security systems. 

 Low latency: Timely communication and processing are 

crucial for improving QoS and meeting essential 

requirements. 

 Geographical distribution: IoT deployments often 

span large areas to serve both stationary and mobile 

users. 

 Support for mobility: Mobility is critical for 

applications that require communication with mobile 

devices or serve users on the move. 

 Location awareness: Identifying object positions is 

essential for applications like security and surveillance 

systems. 

 Fault-tolerant: Efficient fault-tolerant mechanisms are 

needed to address device failures or unavailability. 

 High Task Demand: Continuous data streams from end 

devices necessitate high-end processing for some IoT 

tasks. 

 High communication required: Applications such as 

video streaming or social networking often require 

significant data exchange. 

 Device Heterogeneity: IoT applications must operate 

across a wide variety of devices with differing hardware 

and software configurations. 
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B. Edge Computing Environment  

In edge computing, the processing is performed at the edge 

of network on different devices such as smart phones, smart 

sensor nodes with processing attached to them, wearables 

devices, and on-board units. The data analytics and 

knowledge generation can be accomplished on these edge 

nodes removing the need for a centralized system [17]. Edge 

computing excelled the technology world due to its 

tremendous performing competences in terms of providing 

real-time analytics, cost effective processing, high 

scalability, reduced delay and latency while offering an 

improved quality of service (QoS) [11]. Edge computing 

technology that suggests to empower the network edge will 

reform numerous fields like education, healthcare, planning 

and management of city area services, e-commerce and social 

networks. 

Edge can be defined as any computing resource or a 

network device capable to process data from source to cloud. 

For example, a smart mobile phone can act as edge between 

user and cloud to process user applications, a gateway device 

(network device) in a smart home is an edge node between 

home appliances and cloud. The principle of edge computing 

is that computing should performed be in closeness of data 

sources and at the edge of the network. This will help to 

address concerns of the latency requirement of IoT 

applications, fulfill battery power limitation, bandwidth 

saving. The data privacy and security can also be achieved.  

The edge computing environment allows computing at the 

vicinity of data sources at edge of the network. This results in 

numerous benefits when compared to the cloud based 

computing. Some early results from the research findings 

reveal the potential benefits of edge computing. Researchers 

constructed a framework to run face recognition application 

in [6], and declared response time decreased from 900 to 169 

ms by pushing computations to edge of the network. Ha et al. 

[18] used cloudlet technology to offload the executing tasks 

for wearable cognitive support; the overall improvement in 

response time between 80 and 200 ms is being claimed. 

Furthermore, the energy consumption improvement is 

obtained by 30% to 40% by cloudlet offloading. Clonecloud 

in [19] combines several factors like partitioning, job 

migration, and on-demand instantiation of partitioned tasks 

between mobile node and cloud, and they showed that their 

proposed methodology results in reduction of 20% of running 

time and energy. 

In an edge computing environment, a design by Vallati et 

al. [20] achieves a remarkable reduction in latency and 

promises the security of locality information. Smart city 

solution designed by [21] uses edge computing for the smart 

city application that can effectively identify certain 

dangerous events related to a city environment, such as 

terrorist threats, natural disasters, fabricated disasters, etc. 

Research work in [22] and [23], proposed to designed an 

architecture based on edge computing to address several 

network-related matters like an efficient offloading scheme 

to reduce computation complexities in vehicular technology.  

 

Table 1: Comparison of computing characteristics for IoT 

applications 

 

Characteristic  Edge 

computing 

Mobile 

cloud 

Cloud 

Application 

latency 

Low 

(Milli Sec 

) 

Medium 

(S-M) 

High (M-H ) 

Bandwidth Very low Medium High 

Response 

time 

Low High High 

Resources Limited 

processing 

and 

storage 

Medium 

computatio

n and 

storage 

Ample 

computation 

and storage 

Scalability  High Medium Low 

Energy 

depletion  

Low Medium High 

Quality of 

Service (QoS) 

High Medium Medium  

Deployment Dist. & 

Decent. 

Centralized Centralized  

 

We have presented a comprehensive analysis of different 

contributions of edge computing across different fields by 

plentiful researchers certifying edge computing to be a truly 

reliable and available computing system, in an efficient way 

and using decentralized manner. We have provided specifics 

advantages of edge computing over other similar domains 

used to process IoT applications; a comparison is given in 

Table 1. We are providing a comparative analysis of the 

various characteristics related to computing when performed 

in edge computing, mobile cloud computing and cloud 

computing. It shows that edge computing is better than other 

similar approaches used for processing IoT applications. 

C. Distributed Processing in Edge Computing Environment 

The execution environment of the edge computing tries to 

execute application tasks locally near to the user space before 

processing at cloud, resulting in decreased network overhead 

consequences, application delay, data security and privacy 

matters. Comparing the plentiful of resources at the cloud 

processing nodes in the edge network are low power devices 

and heterogeneity assassinated with them, along with device 

mobility. Executing resource intensive IoT applications on 

individual edge nodes can hamper the quality of service 

(QoS) and user satisfaction. However, distributed execution 

on the smart devices available in the proximity can 

successfully execute a resource demanding, real-time, 

latency-oriented task by dividing its workload among 

available devices. This will allow the applications to take 

advantage from the edge computing environment as well.  

Research exist suggesting to combine edge computing 

resources including Cloudlet [24],  femtoclouds [25] and Fog 

computing [6]. The clustering concept in Femtoclouds is 

based on using dedicated controllers while following a 

centralized mode [26], which can bottleneck the centralized 

computing entity resulting in services degradation. Research 

work in [27] proposed clustering methodology for mobile 
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edge computing (MEC) by using a graph-based approach, 

their methodology tries to handle most of the 

communications at the edge to limit the overall network 

traffic. MEC clusters are formed by segregating geographical 

areas restricting the communication inside a cluster resulting 

in cutting load to the cloud. 

To leverage computing resources of edge nodes in an edge 

computing environment, mobile edge clouds [28], are 

proposed to coordinate numerous edge devices for resource 

intensive applications that are difficult to execute 

successfully on single edge device. Firework [31] leverages 

mobile devices and the cloud to process big tasks, it also 

combines different edge nodes to accomplished big data 

processing tasks cooperatively. Authors in [32] proposed a 

distributed wireless surveillance system, their approach 

prioritizes video frames relevant to query performed by user, 

and achieves maximum objects required by the query and at 

same time decreasing the cost incurred for wireless 

bandwidth. Researchers in [33] proposed an open-source 

framework named as OpenFace, their framework can be used 

for face recognition at a real-time as well as it can perform 

tracking operation by using edge computing.  

III. FAULT TOLERANCE TECHNIQUES 

Fault tolerance is extremely important for edge computing 

to provide reliable services to the IoT applications executing 

in edge computing environment. Different fault tolerance 

methodologies are used for identifying different faults and 

handling these faults in the system that may happen due to 

device faults, network faults, services faults or any other 

faults. Handling a fault efficiently results in robustness of the 

system. Different fault tolerance approaches are used in the 

literature can be categorized as reactive or proactive 

approaches as shown in Fig.2. 

 

 
Fig. 2: Fault tolerance techniques for the edge computing 

A. Reactive Fault Tolerance 

The reactive techniques are primarily used to reduce the 

effect of failure after it happens in the system. Some reactive 

fault tolerance techniques are explored in following after a 

thorough review of literature related to distributed systems, 

cloud and IoT systems. These techniques are cost effective 

and can be fruitful for the edge computing environment. 

Replication: In replications based fault-tolerant syste 

critical parts (e.g. process, data, and communication paths) of 

the system are replicated using redundancy techniques, and 

when the working system fails, the backup takes over to keep 

the system working [34]. A task can continue its processing 

in presence of failures or errors until there exist a replica in 

the system.  

Checkpoint and Rollback: In checkpointing and roll 

back technique, the current state of the system is periodically 

stored to a backup node known as checkpoint [35]. This 

checkpoint information at later used for rollback the 

computations after failure of the node. The checkpoint file 

includes environment variables, process state, values of 

registers and other useful information to restore the system to 

a stable state [36]. 

Process Level Redundancy: The process level 

redundancy is applied where deploying hardware related 

fault tolerance techniques become more expensive. This 

method compares processes to ensure accurate execution and 

it generates a set of redundant processes for each of the 

application process [37].  

Table 2 presents a comparison of different features for 

each of the mentioned technique.  
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B. Proactive Fault Tolerance  

This methodology tries to avoid from faults and errors to 

occur. Cause of faults are determined at prior and a substitute 

component is placed to keep the system smooth execution. 

Following an overview is provided for different proactive 

approaches.  

Services Migration: A service or node is observed 

continuously and pre-copy service/VM migration is 

performed based on some predefined criteria to avoid a 

failure or an error [38]. 

Load Balancing: This methodology is used to balance the 

load of machines between different available machines when 

it exceeds a certain perimeter [39].  

Scale Out: Identifying the bottleneck node and then 

scaling the application by dividing the workload and 

increasing the processing nodes to ensure the application 

smooth working in case of node approaches to a bottleneck 

[40].  

Offloading: a terminology frequently used in IoT and 

edge computing environments. Offloading a task to a remote 

server assure to bridge the gap between limited processing 

capability of edge node and high computation requirements 

of a resource intensive IoT applications [15], [70]. 

IV. FAULT TOLERANCE FOR EDGE COMPUTING 

ENVIRONMENT 

Designing a reliable, efficient and effective fault-tolerant 

system for the edge computing is a vital issue, primarily due 

to heterogeneity and large diversity present among edge 

devices, networks and methodologies used for data 

processing [42]. The significant point is to keep IoT 

application operational if any component of the IoT system 

goes off or faulty. A fault-tolerant system should provide 

availability and reliability [34]. Availability is concerned 

with the system that it is ready to deliver its functionality 

during defined period, while reliability refers to property of 

the system to function unbrokenly provided a specific time 

interval.   

Here at first we will provide review of fault tolerance 

methodologies used for individual devices in the edge 

computing environment. Afterwards, we will discuss in detail 

about fault tolerance for the distributed edge computing 

environment. 

A. Fault Tolerance for Individual Device in Edge 

Computing 

1) Reactive Approaches  

The process of replication adds redundancy in the system, 

and when smart devices are used as edge nodes the 

redundancy can be increased by utilizing devices in the 

vicinity. Fault tolerant health monitoring system is discussed 

in [43] it uses the concept of redundant devices and 

implements an enhanced gateway for fault tolerance. 

According to this research work device preserves a consistent 

view by duplicating the services a failure can be recovered 

within a short interval without any external interference.  

The research work [44] proposed to use an agent-based 

architecture for IoT by following a hierarchical architecture, 

to ensure reliability and fault tolerance. They have used the 

mobile agent to monitor the resources and network. The data 

replication at edge of the network helps to provide the 

reliability, a redirection is performed when a failure happens. 

The possible level for redirection is among cloud, fog, mist or 

dew. To handle unexpected faults, the agent will get the 

priority index for all applications executing on the failed edge 

node and checks for available nodes at the same level once 

find the application migration will be performed and 

connection rerouting is done. In [45] authors discussed the 

fault tolerance and reliability concerns for the fog computing 

to support smart city applications. Fault tolerance is achieved 

using a replica of services in the fog, upon failure of a fog 

node the services that are processed by this node are replaced 

by similar service available on another working fog node 

available in the locality. 

Some research proposed to build energy-efficient 

fault-tolerant approach for specific devices in IoT by 

checkpointing the program execution data to stable storage 

on the same device [46], [47]. Main point is to store selected 

states of a program to reduce the time overhead involved in 

writing checkpoint data to Non-Volatile Memory (NVM); 

they have used a well-known algorithm “max-flow min-cut” 

on the data flow model of the program. Their focus is on fault 

recovery for a single device.  

Edge devices face resource contention making it tough to 

handle IoT applications especially during the disasters, for 

Table 2 :  Comparison of different techniques used for fault-tolerant system 

Comparison 

property  

Replication  Checkpoint and rollback Process level redundancy  

Functioning  Create a separate replica of 

important entities  

Store working state to stable 

place for recovery 

Create a set of redundant 

processes  

Performance  Depends on number of 

replicas, less replicas high 

performance  

Checkpointing interval and file 

size, efficient for low frequency 

and small size 

Decreases as frequency of fault 

and repair increases  

Fault handling More number of replicas more 

faults are tolerable  

Depends on efficient chickening 

scheduling mechanism  

Depends on scaling number of 

redundant processes  

System 

consistency  

More replicas can cause 

problem to system consistency  

More consistent if global 

checkpointing is used  

Process redundancy to easily 

schedule process on hardware  

Cost effective  Increase cost with number of 

replicas increased  

Cost effective solution  Enhancing process level 

redundancy need more resources  
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situations like this fault tolerance is must required in order to 

cope with the situation,\a distributed task offloading scheme 

is provided by [41] to ensure fault tolerance for mobile edge 

computing networks. Their approach reduces task execution 

time and system energy by using multi-agent proximal 

optimization algorithm. The system is suitable for failure 

scenarios occurred during services to meet the task 

requirements.   

A checkpointing mechanism known as Distributed 

Multi-Threaded Check Pointing (DMTCP) offers a 

methodology for transparent checkpointing, this technique 

performs checkpoint/restart without any change to original 

code of the application or operating system, it can be adapted 

for IoT applications [48]. The scene here represents a partial 

view of the global state is check pointed, and after failure 

occurs a new scene in the form of a process resumed from a 

checkpoint file. 

2) Proactive Approaches 

Research work in [49] proposes an intelligent framework 

that is based on semantic reasoning. They have proposed to 

use checkpointing mechanism to handle more flexibly an IoT 

system, where gateways are installed to collect data and 

connect to cloud for user application. They handled 

dynamicity, which can occur due to new services or mobility 

by means of a checkpointing methodology, hence, migration 

of the software can be performed from one gateway to 

another gateway. This will help in cases such as 

transportations, logistics, or applications where devices need 

to change their physical position to some other place or city. 

Additionally, this will also help when the gateway device has 

limited resources in terms of memory, processing, battery 

power, and other resources. 

Authors in [50] have proposed a microservices based fault 

tolerance framework to provide real-time and predictive fault 

tolerance support to IoT systems. Their framework uses two 

microservices to provide reactive and proactive fault 

tolerance. One microservice “Real-Time FT” uses complex 

event processing (CEP) and analyzes incoming streams of 

data for quick error recovery. The second one named 

“Predictive FT”, which uses machine learning techniques to 

allow the system to learn and identify when a fault begins or 

likely to start due to similar prior learned experiences and 

mitigate the future faults. This will ensure the proactive 

approach. 

Authors in [68] provided a modified (m, n)-fault tolerance 

strategy named as M-MNFT, their strategy is different from 

others is that their method take in to account failure of the 

edge server, moreover their approach selects some other edge 

base stations available redundantly to provide task migration 

reliability, this is based on the reduced relative distance fact 

between the source and destination edge server wile sending 

the request this will mitigate impact of the failure of the edge 

base station on QoS during the task transfering. 

B. Fault Tolerance for Distributed Edge Computing 

The resource intensive big tasks can also enjoy benefits of 

edge computing in terms of locality processing with reduced 

latency and lesser network traffic by distributing the 

processing on the available nodes in the edge network. 

However, providing failure handling will become crucial for 

such a scenario. Different approaches have potential to 

provide fault tolerance for the distributed edge computing 

including checkpointing, replication, offloading and other 

methodologies discussed in Section 3, as shown in Figure 3. 

For the smart devices present in the edge network with 

limited resources these techniques with modification can 

result in an efficient fault-tolerant system for distributed edge 

computing environment. In following, we will discuss 

different methodologies and systems used by the research 

community to provide fault tolerance for the distributed edge 

computing. 

Cluster formation among devices in IoT to execute a task 

efficiently for a given application, the clustering helps in 

device collaboration and helps in prolonging overall network 

lifetime [32]. One common methodology used to solve the 

fault-tolerant problem for clustering is to use dominate set 

clustering [51 – 53], where it is tried to find dominate set 

inside a specific network thus every node of the network is 

within k hops to the nodes present in the dominate set. 

LEACH [54] have proposed a distributed algorithm to elect a 

cluster head (CH) based on energy level of each node in 

comparison to neighbors, the cluster head could be switched 

as energy changes or a head node fails to help with load 

balance and provide fault tolerance.  

 
Fig.3: Fault tolerance methodologies for distributed edge 

computing environment 

 

All of these involve the extra overhead of cluster formation 

and management, which is an extra burden on the cluster 

head. The benefit of a centralized methodology is that it can 

get lot of  information that is precise and a system that is more 

powerful. Among the centralized techniques, research work 

in [55] tries to attain fault tolerance for clusters by allocating 

nodes to some existing gateway devices by following a 

heuristic based algorithm. 

In edge computing main concern is with distributed and 

decentralized patterns with heterogeneous devices. The 

framework in [56] optimizes the fault tolerance for service 

based IoT applications in virtualized wireless sensor 

networks, with an emphasis on heterogeneity present in 
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networks. The benefits of distributed methodologies mainly 

reside on that it could better adjust to the mobility of smart 

devices used as edge nodes, and better scalability [51]. Data 

replication is a promising technique to preserve valuable 

sensed data in a distributed network. DRAW [57] offers a 

fully distributed data replication technique by replicating data 

hop-by-hop for IoT systems. This guarantees maximum data 

availability even under high node failure rate, but in a limited 

node environment, the number of distinct replicas of data that 

can be stored in the network decreases. It also suffers the 

overhead of extra messages transferred between nodes to 

create replicas on these nodes. 

To ensure fault tolerance and automated recovery can be 

performed by using existing well-known technologies can 

also be used like Containers, Kubernetes, and Apache Kafka. 

CEFIoT presents and architecture for a fault-tolerant system 

to execute IoT applications in small edge clusters and cloud 

[58]. They used Apache Kafka for data replication solution 

and Kubernetes for fault-tolerant management to provide 

on-the-fly dynamic reconfiguration of the processing array to 

handle failures.  

Crystal provides an easy abstraction for fog application 

development to build a sustainable distributed fog computing 

application [59]. Their implementation of crystal using 

MapReduce framework achieved fault tolerance for 

distributed processing over heterogeneous, unreliable, fog 

nodes. They also showed to reduce overall latency by 

processing data close to the source. 

Designing an efficient fault-tolerant system also involves 

investigating the reliability parameters of computing devices 

in the distributed system. The reliability and availability 

modeling is a very important requirement to ensure robust 

design and operations. A fault-tolerant and energy efficient 

framework is proposed for remote storage of data and 

processing of tasks under a dynamic network topology of a 

mobile cloud [60]. They used a k-out-of-n reliability 

mechanism for distributed computing of mobile cloud to 

partition data and object to store on different nodes, until k or 

more out of n nodes are working a failure can be recovered. 

Fault tolerance using the redundancy technique is used to 

meet high reliability and availability requirement of SAN 

[61], they have evaluated the reliability of mesh SAN by 

using a binary decision diagrams. 

Fault tolerance can be achieved for IoT through virtual 

service composition, where using single service executing on 

single devices with backup devices for each other [62]. There 

exists natural redundancy of services across different devices 

available at office, home, and different scenarios; this should 

be exploited to provide fault tolerance [63]. Research work in 

[64] proposes a fault-tolerant platform for smart home 

applications, mainly concentrating on link failure. It provides 

fault-tolerant event transfer of sensor and actuation 

commands in the presence of link failure and network 

partitions. An IoT based architecture for health care 

environment with fault tolerance is presented in [43], their 

approach considers network fault tolerance by using backup 

routing between nodes and advanced service mechanisms to 

ensure connectivity in case of error or a failure to a 

connection. 

A decentralized distributed fault tolerance methodology is 

presented in [7]. This research work at first presented a 

methodology for edge node group formation to execute a 

resource intensive task in parallel and distributed on the 

nodes in the group. This will help to achieve the application 

latency requirements. They have calculated the edge node 

reliability parameters based on device local properties, and 

used these reliability calculations to provide an efficient fault 

tolerance methodology. The fault tolerance methodology 

replicates process and data on the set of neighbor nodes to 

ensure the availability and reliability parameters calculated 

previously. 

Authors in [65] provided a distributed fault tolerant system 

to handle dynamic IoT environment. A strip data structure is 

designed to manage replicated services; this provides a 

redundancy abstraction for service peers. Each device 

maintains consistent view of replicated services on strip. The 

heartbeat protocol and manipulation of strip in distributed 

manner allows to recovery from failure. The research work in 

[66] present the implementation of a platform to ensure 

mobility and reliability to computational tasks executing in 

mobile cloud platforms. Replication is used for fault 

tolerance and by placing redundant processing on different 

nodes is achieved in a distributed system. They have also 

handled easy migration of tasks executing in the access 

network and provided the necessary functions.     

The table 3 provides a detailed comparison of different 

methodologies and frameworks used for fault tolerance in the 

IoT edge computing environment. The different features are 

compared with focus on network approach followed as 

centralized or decentralized, it is clear that most of the 

distributed fault tolerance research works have followed a 

centralized methodology and a fewer has the decentralized 

one. The other feature compared is about which technique is 

followed for making the backup in the system. Replication 

and checkpointing techniques are massively used by the 

research community to design a fault tolerance for the edge 

computing environment. Most of the literature have not 

considered the device heterogeneity that is a key property of 

devices present in the edge network. A very few works have 

calculated the reliability parameters. Most of the techniques 

are concerned to provide fault tolerance to the process and 

data of an IoT application.  

 

Table 3: A comparison of fault tolerance approaches for IoT systems 

Literature Distributed  Approach Consider 

heterogeneity  

Supports  Reliability 

Measures 

Technique Description 

Energy 

[46] 

No I No Process 

and data 

No CP Support single device failure in IOT 

Mobility No D No Process No CP Support mobility of gateway device 
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[49] and data 

IoT/M2M 

[65] 

Yes D No Services No RP Automatic recovery of failed service 

without user interventions  

Mobile 

cloud [60] 

Yes C No Process 

and data 

Yes RP Support dynamic network topology  

Mesh 

SAN [61] 

Yes C No Communi

cation 

Yes RD Ensure link reliability of SAN 

Hybrid 

[67] 

Yes C No Process No Hybrid Use reactive and proactive policies 

for FT 

Smart 

city [45] 

Yes D Yes Service No RP Consider failure of fog node to 

provide FT to smart city applications 

FaaS [29] Yes C Yes Microserv

ice  

No CP Use function as a service (FaaS) and 

checkpointing for long running 

functions 

DRAW 

[57] 

Yes D No Data No RP Increase data replication to keep IoT 

application working 

Crystal 

[59] 

Yes D Yes Process & 

communic

ation 

No RD Framework for designers to follow 

MapReduce functionality on crystals  

Resilience 

[30] 

Yes  CS Yes Process No CP Restore process and interaction with 

physical world of devices in failure  

Legend: C=centralized, D= Decentralized, I=Individual, CS= Client-Server, CP=checkpointing, RP= Replication,  

RD=Redundancy 

        

V. FUTURE DIRECTIONS  

Edge computing, being in its infancy stage, has already 

attracted the research community and IoT industry, and it is 

predicted to be the major driving force for the 

latency-oriented processing. The fault tolerance in edge 

computing environment still has a number of challenges due 

to its architecture.  

A. Offloading 

An efficient offloading model is required for processes 

executing on the edge nodes. This will help to handle 

individual edge node faults due to low power and processing 

resource limitations of an edge node. The offloading 

approach requires optimization in terms of performance in 

the real-time scenario. 

B. Optimized Resource Allocation with Fault Tolerance 

The fault tolerance system has to consider the resource 

allocation optimizations to achieve an effective reliable 

fault-tolerant system. The device heterogeneity has to be 

handled while the resources allocation is performed, this will 

result in task allocation optimization and based on the 

available resources of a node a task can finish well in time 

based on the available resources of the device. This will result 

in fewer task failures.  

C. Fault Tolerance and Decentralized Methodology  

The nature of edge computing is distributed and 

decentralized, hence, if the fault tolerance methodology 

follows the fault handling using a decentralized mode based 

on individual device properties it can result in an efficient 

system.  

D. Reliability Measurements  

The fault tolerance system should be based on proper 

reliability measures. This can be achieved by measuring the 

individual node failure probabilities, and other related 

parameters like device failure rate, and meat time between 

failures (MTBF).   

E. Energy Efficiency  

An efficient fault tolerance system that can significantly 

achieve energy efficiency at same time. Extending cloud to 

the edge of the network will involve deploying edge devices 

closer to the user, the more devices deployed more energy 

will be required. A fault tolerance system considering the 

energy of devices is required. For this opting an adaptive 

checkpointing mechanism can be a viable solution.  

F. Fault Tolerance for Limited Devices 

Due to mobility property and resource limitations, devices 

in the edge network might be inadequate to provide backup 

for every entity of the IoT system. An efficient fault tolerance 

system is required that should select the backup techniques 

based on the available resources in the edge network, and 

should be dynamic with respect to available resources present 

in the edge network.   

 

CONCLUSION 

The edge computing could help to achieve latency 

requirements of the applications by executing them closer to 

the user at edge of network. Failures are inevitable in edge 

nodes due to their mobility property and resources 

limitations. To guarantee successful execution of critical IoT 

application running in an edge network, fault tolerance 

becomes a vital issue. An efficient fault tolerance technique 
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helps to achieve reliability and availability in the system 

along with handling failure recovery. This survey paper has 

provided a detailed overview of edge computing environment 

with special focus on the fault tolerance. Various fault 

tolerance techniques are outlined, which are being used in the 

edge computing environment to design a fault tolerance 

system. Further, fault tolerance for the distributed edge 

computing environment is reviewed. By comparison of 

current methodologies, we have put forth some future 

directions for the research initiatives.                                            
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