

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

795 remittancesreview.com

 Received : 10 July 2023, Accepted: 28 September 2023

DOI: https://doi.org/10.33282/rr.vx9i.84

Abstract

Online video games are executed on edge devices that are limited in power, battery, and computation

constraints. So, it is necessary to offload the tasks of these games to some other devices as the games

cannot bear latency. Offloading a task to the cloud is the default choice but increases the latency and

cost. To overcome these factors, a system based on the heuristic algorithm and fuzzy logic (FL)

methodology is proposed for resource measurement at an edge node which offloads the tasks of

games to other available edge devices in the edge network. A FL system will estimate parameters like

battery, power, and memory of the device and generates the output showing whether to offload or

keep the game on the device, the heuristic algorithm will find the best device for offloading by

comparing the parameters of the available devices. Based on current research, the proposed system is

applicable and it can be a remarkable addition to the research community and industry in the era of

IoT games executing in an edge computing environment.

Index Terms—Edge Computing, offloading, fault tolerance.

Failure Handling for Real-time Games running at Edge Computing

Environment using offloading

Nimra Aslam
[1]

Muhammad Mudassar
* [1]

, Muhammad Altaf
[1]

 [1]
Computer Science Department, COMSATS University Islamabad Vehari Campus,

Vehari, Pakistan
*
Corresponding author muhammad.mudassar@cuivehari.edu.pk

mailto:muhammad.mudassar@cuivehari.edu.pk

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

796 remittancesreview.com

I. INTRODUCTION

 With the growth of Information Technology, the number of

IoT devices is increasing every day. The Internet of Things

(IoT) is a network of physically addressable objects that may

interact and communicate with one another using the Internet

as their common platform. Sensors, actuators, cloud services,

protocols, and layers are just a few of the components that

make up IoT architecture. The architecture of IoT for gaming

consists of three layers as shown in Figure 1. Different levels

of processing, sensing, and actuation capabilities are

available for these things. [1].

There are various applications of IoT. Smart cities, smart

rooms, smart agriculture systems, etc. are being used to

facilitate human beings. It is estimated that by the end of

2030, the number of IoT devices will increase to 29.4 billion

[2]. Applications running on IoT devices require

communication technologies as well as the availability of a

reliable and high-speed internet connection. It includes

Augmented Reality (AR), Online Video games, and Video

Streaming [3]. The IoT devices are limited in processing,

storage, and battery constraints, it is necessary to offload the

tasks of applications to some other nearby devices (edge

devices), fog devices, or cloud devices for the smooth

execution of tasks.

IoT devices having inadequate battery, power, and

computation resources, execute their applications on cloud

and fog. When an application is being executed on these

devices, it is checked and measured periodically for battery,

memory, and storage constraint. If anyone of the constraint is

running out, the tasks of the application are shifted to the

cloud or fog. If it requires high computation, then it is

offloaded to the cloud. But if the device is losing power, the

tasks are sent to fog instead of the cloud [4]. For example, if a

person wearing a smartwatch is running, all the sensors sense

the data and send it to the cloud or fog. The operations are

performed on these sides and the results are sent back to the

devices.

Figure 1: Games and IoT

Cloud computing is considered the most promising technique

to tackle the massive growth of IoT devices in processing,

storage, and resource constraints as it provides pay-as-you-go

and on-demand resources. IoT devices that are limited in

battery and computation constraints, offload their tasks to the

cloud. However, resources in cloud computing are centrally

located at a distance from the normal IoT devices that

generate significant amount of data needs to be processed and

delivered in real-time [5]. Offloading tasks to the cloud are

not feasible for applications that are concerned with low

latency because offloading tasks to the cloud devices

increases the latency [6]. Moreover, it also increases the cost

because the cloud has to maintain a large data center to

provide the resources for computation and storage [7].

Therefore, tasks that require low latency are offloaded to

nearby edge devices.

Fog computing is the solution to increase latency in cloud

computing. It brings the cloud services near the edge devices.

The IoT devices that require low latency, offload their tasks

to fog. It serves as a filter between cloud and edge devices.

Offloading is only the most important data to the cloud after

being filtered at the edge. Latency and bandwidth problems

associated with cloud computing are addressed using fog

computing by bringing cloud services closer to edge devices

[8]. The cost is increased because the task management

design is sophisticated even though it improves network

efficiency and reduces latency. Cloud and fog computing's

drawbacks are overcome via edge computing. Edge

computing provides an enormous number of devices that are

very close to the IoT devices to decrease latency. In edge

computing, large files are not uploaded/downloaded.

Moreover, the pre-execution of tasks is not done, thus the

overall performance and delay time of the applications are

decreased [9], [10] the tasks are offloaded to the other edge

devices based on some parameters and these parameters are

measured using fuzzy logics.

The Fuzzy Logic (FL) provides reasoning which resembles

how our brains operate more closely. It aims to simplify

difficult problems to a level that is understandable. This helps

to characterize the system's uncertainty and imprecision so

that the imprecise information can be defined more logically

and understandably [11]. FL rules are designed based on

some parameters e.g., battery, memory, processing, etc. Then

linguistic variables are assigned to these rules. The resources

are measured based on these variables and offloading

decisions are made. For their research work the fuzzy logic is

used to detect the node contention or the bottleneck to decide

about the offload. This architecture of the fuzzy logic based

system is provided in Figure 2.

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

797 remittancesreview.com

Figure 2: Architecture of fuzzy logic system [26]

Video games are one of the most complicated applications

because of the real-time constraints and high processing

demands. They require much computation and processing as

they display the streaming video in a real-time manner while

mobile or edge devices do have not much computation and

processing power to execute high-intensity video games

efficiently. Cloud gaming, which executes the entire game on

specialized cloud servers, is one approach to this problem.

The video is encoded and transmitted to the device by the

servers after the game has finished rendering. [12]. But this

increases the latency and the costs will be too high.

The proposed approach aims to offload the tasks of video

games to high-computation edge devices. So, to decrease the

delay time and for efficient utilization of the edge nodes, the

tasks of the application (Online video game) are divided into

a finite number of sets and are offloaded to the nearby

high-computation edge devices. The tasks of video games are

dependent. As it is an NP-hard problem, dependent tasks are

offloaded using a heuristic approach [13]. The offloading is

done based on some parameters (RAM, battery of mobile

devices, CPU utilization, and mobility). The proposed

approach adopts the fuzzy logic method to take decisions, on

where to offload the tasks. This fuzzy logic works on the

parameter mentioned above. Then these tasks are offloaded

to the nodes based on the mentioned algorithm. Moreover, an

architecture that includes the required components will be

proposed.

To reduce the latency, a heuristic algorithm and fuzzy

logic-based system is proposed. The fuzzy logic system will

check the device parameters and checks if there is need of

offloading. If offloading is required then the heuristic

algorithm will check out the best device for offloading based

on some parameters and then the game will be offloaded to

that device.

II. LITERATURE REVIEW

These exist literature related to offloading, fault tolerance,

edge computing environment and game execution. These

previous research works assumes an application's tasks are

independent from each other to reduce the dependencies and

simplify offloading mechanism. But at real there exist

dependencies between different tasks of and application. The

predecessor has to complete its processing before the next

dependent task. To handle these dependencies some authors

used the call gap between different modules of the

application which indicates the tasks that are dependent need

some time to wait [14]. Scheduling for the applications

having interdependencies between tasks is a tough one [15],

[16].

 Authors in [17] used priority queues where all of the tasks

are completed orderly. The work in [18] proposes designing a

cost-efficient system for offloading different tasks of

multiple user based environment. This type of environment is

common in games. The system in [18] also proposed to use

heuristic offloading algorithm to reduce the cost making it

cost effective for the constraint based environment. After the

first task next offloading of tasks is based on the remaining

energy of the relative node making the system to choose from

high-cost devices to low-cost devices in term of energy

reducing the system costs and ensuring energy requirement

and completion time requirements.

Edge-cloud offloading is common and the independent task

offloading is proposed by [19]. They targeted to reduce the

time by using the fuzzy logic to schedule the task based on

the device test using the fuzzy rules. Their task scheduling

algorithm compares the capacity of the resource upto some

thresh-hold values and decide to offload task once the

threshold meets. The simulated results show that independent

tasks were offloaded successfully. However, there exist lack

of studies that have some mechanism to offload the tasks of

the video games. The processing environment of games is

somewhat different from the normal applications as these are

normally online and multiplayers can also involve making

the task dependencies different from normal application. It is

highly required to model such scenario as the games are

getting more famous. Currently game playing and developing

is having high trends in the computing world.

A. Offloading to Fog Devices

Unlike edge cloud offloading, the fog have resources and

can afford offloading to these devices and they can execute

the task on behalf of the cloud. The research work [20] have

discussed the fog nodes are small but have computation

resources and some IoT device can offload tasks to the fog

node. Down-link Non-Orthogonal Multiple Access (NOMA)

is applied for efficient offloading. Using their methodology, a

single IoT device can offload to some or multiple fog devices.

The work in [21] considers uplink NOMA to offload to an

edge device that is not considered previously, however they

have not considered processing limitation of the nodes as the

assumed unlimited processing which is not possible at

real-time. Additionally, they care the profit of transferring a

single task leading this to calculate the profit that is short

term.

Authors in [24], presented a method to offload that

improves the functionality of games using the Unity 3D

environment. The game objects are offloaded to the edge

server, game object frames that are rendered on the server

based on some heuristic algorithm to play the game. These

frames can be transfer back to the mobile. Their focus is onl

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

798 remittancesreview.com

to run the game the latency handling is not perfumed. Authors

in [25] have discussed the latency reduction. They used

common algorithms. The results show that DPSO is better

task migration algorithm and more appropriate low latency

applications like games.

B. Centralized and Distributed Task Offloading

Offloading decision can be processed in centralized or in

distributed for edge computing environment. For centralized

offloading [27] [28] a multiuser task offloading strategy is

proposed by authors in [27], and centralized job offloading is

advised in [28] ro reduce overall energy consumption the

solution is based on deep-learning. However, the user

satisfaction is not considered for the former approaches.

Industrial IoT-Edge-Cloud computing scenarios multi-hop

cooperative computation offloading is proposed for the case

of distributed offloading by Hong et al. [29]. Wang et al. [30]

used deep-learning to study the offloading problem and

resource allocation. In general the recent research unable to

cover effects of offloading within the edge computing

environment and between the edge nodes themselves.

Resource allocation and offloading for three-way

round-robin game with many uses and edge nodes is

proposed by [31]. Their design involves a service-oriented

resource allocation method for the edge computing

environment. Gu et al. [32] suggested student project

allocation game strategy based on matching game. These

research papers take into account the issue related to resource

allocation between users and edge nodes but some offloading

mechanism is missing.

Table 3.1 represents the limitations that we have found in

our study. The authors in [18] have used the heuristic

algorithm and relative energy consumption approach for

offloading. But they have made offloading from edge to

cloud with the aim to reduce the system cost but offloading to

the cloud actually increases the cost. offloading from edge to

fog has been done in [20] however they do not focus on

reducing the latency. The creation of a virtual machine using

libraries and compiler (NDK) for offloading is proposed in

[23], which is created on the cloud and ultimately increases

latency as well as cost. We have proposed the offloading

between edge devices. that will not only decrease the latency

but will reduce the cost for the systems where cost is a major

factor.

III. METHODOLOGY

A. The Fuzzy Logic System

The input given to the fuzzy logic system is CPU

utilization, memory utilization, and battery usage. Using the

Python library psutil, the values are taken directly from the

system and given to the fuzzy logic system as input, and a

fuzzy value for offloading is generated.

In fuzzy logic-based task offloading, data analysis is

typically performed using a combination of methods and

tools to handle fuzzy sets and decision-making processes.

Here are some commonly used methods and tools for data

analysis in fuzzy logic-based task offloading:

1. Fuzzy Sets and Membership Functions: these are the

basic concepts in fuzzy logic. It represents and quantify

linguistic variables and their degrees of membership in a

fuzzy set. Membership functions define the shape and

Table 1 : Comparative study

Paper Algorithm Approach Latency

based

offloading

Device

heterogeneity

Cloud/

Edge/

Fog

Limitations

[18] Heuristic

Algorithm

Relative energy

consumption

No Yes Edge to

Cloud

 Only focuses on

reducing the system

cost.

[19] Fuzzy logic

algorithm

Fuzzy logic

system

Yes No Edge to

Cloud

Only focuses on

independent tasks.

[20] Lyapunov

optimization

-based

algorithm

Downlink

NOZMA

No Yes Edge to

Fog

Only focuses on

offloading to fog

devices.

 [21] Lagrange dual

methodbased

algorithm

Uplink

NOMA

No - Edge to

Fog

Only focuses on

offloading a

single task to

limited

computation

devices.

[23] Creates

Virtual

Machine

Library &

Compiler

(NDK)

No No Cloud Increased latency

[24] Heuristic

algorithm

RPC and GVSP No Yes Cloud Focuses just

increasing

game capacity,
latency is not

handled.

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

799 remittancesreview.com

characteristics of fuzzy sets, enabling the modeling of

uncertain and imprecise data.

2. Fuzzy Logic Systems: These are used to process fuzzy

rules and make decisions based on fuzzy logic. They consist

of fuzzification, rule evaluation,and defuzzification stages.

Fuzzification changes crisp input data to fuzzy sets, a

membership function is used. Rule evaluation applies fuzzy

rules to the fuzzy inputs and produces fuzzy outputs.

Defuzzification changes back the fuzzy output to crisp for the

decision.

3. Rule-based Reasoning: Rule-based reasoning is a key

component of fuzzy logic-based task offloading. It involves

defining a set of fuzzy rules that describe the relationship

between input variables (such as CPU utilization, memory

utilization and battery) and the offloading decision status

(Offload, Keep). These rules are based on expert knowledge

and domain-specific considerations. The rules are typically

expressed using "IF-THEN" statements, where the

antecedent (IF part) specifies the conditions, and the

consequent (THEN part) determines the offloading decision.

4. Toolkits and Libraries: There are several toolkits and

libraries available that provide functionality for working with

fuzzy logic and performing data analysis in fuzzy systems.

Some popular ones include:

1. Scikit-Fuzzy: A Python library that provides a wide range

of fuzzy logic tools, including fuzzy sets, membership

functions, fuzzy inference systems, and defuzzification

methods.

2. Psutil Python Library: This Python library is used to

utilize real-time values of the fuzzy logic input variables like

CPU utilization, memory utilization, and battery from the

device dynamically.

3. Matplot Library: This Python library is used to generate

graphs with different graph styles for visual representation.

We used this library for plotting the real-time system stats

and comparison graphs.

The datasets consist of the input variables for the fuzzy logic

system and devices for the heuristic algorithm. There are 3

input variables used as datasets in this research work. In

fuzzy logic-based systems, datasets consist of input variables

and corresponding output variables. In the case of task

offloading, where fuzzy logic is used, the dataset may include

input variables such as CPU utilization, memory utilization,

and battery life. These variables provide information about

the current state of the system and help determine the

offloading decision.

In Table 2, each row represents a specific observation or

instance within the dataset. The dataset captures various

combinations of input variables and their corresponding

achieved results. The columns in the table represent the input

variables, including CPU utilization, memory utilization, and

battery life. Each value within the table corresponds to the

respective variable's measurement or observation for a

specific instance.

The dataset encompasses a diverse range of instances,

encompassing different system states at various points in

time. These instances can be collected through measurements

or simulations, enabling the representation of a

comprehensive set of system states and their associated

values for CPU utilization, memory utilization, and battery

life.

Table 2: Dataset for input variables

CPU (%) Memory (%) Battery (%)

59 50 20

20 80 68

70 25 23

65 60 90

45 30 100

IV. PROPOSED ARCHITECTURE

The architecture diagram of our work is shown in Figure 3.

This architecture is the implementation of the proposed work

in which the gaming devices and edge nodes are connected

with each other through a central layer which is the edge

manager. The edge manager monitors the devices and

manages the services of the nodes based on the data collected

by these nodes. The detail of the components of the

architecture and their interaction is given below;

Figure 3: Architecture of Proposed Work

A. Edge Manager

Edge Manager (EM) is a centralized component that is

responsible for planning, managing, and deploying the

application services in the Edge-Edge system. In order to

know the status of system resources (such as available and

used), the number of edge devices, the tasks performed by

their applications, and the offloading of game tasks, EM

communicates with other architectural components. The

components of EM are Application Manager, Infrastructure

Manager, and Planner. EM is an independent entity and keeps

all the edge nodes in its control to manage them.

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

800 remittancesreview.com

1) Application Manager

It manages all the game applications that run on an edge

device or mobile device. It keeps a record of all the game

requirements including memory, CPU Utilization, latency

constraints, etc.

2) Infrastructure Manager

It is key component of all the physical components of the

Edge-Edge system. Like processors, IoT devices, and

network devices for all the edge nodes. It provides the detail

of the utilization of all the physical components of the EM.

3) Planner

This component mainly monitors the game tasks, detect the

tasks failures due to the shortage of resources and make the

offloading plans according to the need. The task offloading

method that is being discussed in this study operates on this

component and sends its output to the EM for execution.

B. Fuzzy Logic System

This module will determine the appropriate place to offload

the gaming tasks by collecting information related to

offloading tasks and CPU utilization. The description of the

process of the fuzzy logic system is as follows:

1) Fuzzy Input Variables

Here for the fuzzy system the necessary inputs are defined.

The required inputs are edge node CPU utilization, the

battery of the edge device, and the memory of the edge node.

We represented all these variables as linguistic variables:

Low, Medium, and High as shown in Figure 4. These

categories show the dynamic shift in the characteristics of the

Edge-Edge architecture and applications' offloaded

responsibilities.

Figure 4: Proposed Fuzzy Logic System

a) CPU Utilization

This parameter represents the current utilization level of the

CPU of the edge device on which the game is being executed.

By this parameter, we can know about the capacity of that

node. If it is highly utilized, then the tasks of the game needed

to be offloaded to another edge device, having maximum

resources to execute those tasks.

b) Battery Usage

This parameter represents the current battery level of the edge

device on which the game is being executed. By this

parameter, we can know about the remaining battery time of

that node. If the battery of the device is running out, then the

tasks of the game will be shifted to some other device with a

high battery level so that the game tasks can be executed

efficiently to reduce the latency.

c) Memory Utilization

This parameter refers to the current storage level of the edge

device on which the game is being executed. By this

parameter, we can know about the remaining memory of that

node. If the storage capacity of the device is running out, then

the tasks of the game need to be shifted to some other device

with a higher storage capacity so that the latency can be

reduced and the game tasks can be executed efficiently.

2) Fuzzification

In this stage, all the required values will be given as numeric

input to the fuzzifier, then all these values will be assigned to

the related linguistic variable in membership functions (e.g.,

Low, Medium, High), after that the fuzzy variables of all the

parameters will be combined and evaluated in the fuzzy

rules-base. This will produce the output known as the

de-fuzzification.

a) Fuzzy Membership Functions

For each fuzzy input variable, the linguistic variable is

quantified using the fuzzy membership function. In this

work, we have used three functions. CPU Utilization, Battery

Usage, and Memory Utilization have three variables (Low,

Medium, and High). The membership function for CPU

Utilization is shown in Figure 5. The values (0,15,35) show

the Low linguistic variable, the Medium linguistic variable is

shown by values (25,45,65), and the values (55,80,100)

represent the High linguistic variable for CPU Utilization.

The membership function for Battery Usage is shown in

Figure 6. The values (0,15,35) show the Low linguistic

variable, the Medium linguistic variable is shown by values

(25,45,65), and the values (55,80,100) represent the High

linguistic variable for Battery usage. The membership

function Memory Utilization is shown in Figure 7. The

values (0,15,35) show the Low linguistic variable, the

Medium linguistic variable is shown by values (25,45,65),

and the values (55,80,100) represent the High linguistic

variable for Memory Utilization.

Figure 5:Membership Function for CPU Utilization

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

801 remittancesreview.com

Figure 6: Membership Function for Battery Usage

Figure 7: Membership Function for Memory Utilization

b) Fuzzy Rules-Base

It is a set of fuzzy rules that are similar to the way humans

think. It is the collection of simple If-Then conditions that

cover all the possible system behavior and conditions. These

rules are very important and critical as they define the overall

system performance. For example, if the CPU Utilization is

Low, Battery Usage is Low, and Memory Utilization is Low

too, then there is no need to offload and the tasks will be

executed on that current device and the output will be Keep.

Similarly, if the CPU Utilization is High, Battery Usage is

High, and Memory Utilization is High too then the tasks will

be offloaded to some other device and the output will be

Offload. These outputs will be used at the defuzzification

stage. Some examples of fuzzy rules-base are given in Table

5.1. The main aim of the work is to reduce the latency so that

games can run efficiently.

Table 2: Fuzzy Rules

 Input Variables Output

Rule CPU

Utilization

Memory

Utilization

Battery

Usage

Output

Decision

1 L L L Keep

2 L L M Keep

3 L L H Keep

4 L M L Offload

5 L M M Keep

6 L M H Keep

7 L H L Offload

8 L H M Offload

9 L H H Offload

10 M L L Offload

11 M L M Keep

12 M L H Keep

13 M M L offload

14 M M M Keep

15 M M H Keep

16 M H L Offload

17 M H M Offload

18 M H H Offload

19 H L L Offload

20 H L M Offload

21 H L H Offload

22 H M L Offload

23 H M M Offload

24 H M H Offload

25 H H L Offload

26 H H M Offload

27 H H H Offload

3) Defuzzification

Defuzzification is the process of turning the inference

engine's fuzzy output into a clear output that may be used for

control or decision-making. A fuzzy set that depicts the

degree of membership of the output variable in each of its

linguistic words is the output of the inference engine in fuzzy

logic. The output variable Fuzzy Value has two fuzzy

membership functions, Keep and Offload. The membership

function for Fuzzy value is shown in Figure 8. The values

(0,40,80) show the Keep linguistic variable and the values

(80,95,100) represent the Offload linguistic variable for

Fuzzy Value.

4) Defuzzification Techniques

Defuzzification can be accomplished using a number of

techniques, including the centroid approach, mean of

maximum (MOM) method, and smallest of maximum (SOM)

method, among others. The choice of method relies on the

particular application and each method has advantages and

cons of its own.

Figure 8: Defuzzifiction function

a) Centroid Approach

One of the most popular defuzzification techniques is the

centroid approach. In this method, the crisp output is the

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

802 remittancesreview.com

center of gravity for the set of fuzzy outputs. By averaging

the values of the output variable over the range of its

discourse universe, the center of gravity is determined. The

weights represent the levels of the output variable's

membership in each of its linguistic phrases. In our work, we

have used the Centroid method for defuzzification.

b) MOM Approach

Another prominent technique for defuzzification is the MOM

approach. The crisp result for this method is the average of

the output variable's maximum values across the gamut of its

discursive universe. This method can be helpful when the

output variable's membership function contains numerous

peaks.

c) SOM Approach

The SOM method is an easy defuzzification technique that

chooses the crisp output as the value representing the highest

degree of membership in the fuzzy output set. This approach

is helpful when the output variable has a single peak in its

membership function.

C. Heuristic Algorithm System

Heuristic algorithm is a technique or approach that provides a

practical solution to a problem by using experience, intuition,

or rules of thumb rather than guaranteeing an optimal or

perfect solution. Heuristics are often employed when finding

an optimal solution is computationally expensive or not

feasible. In our work, the heuristic algorithm system is used

to find the best device out of all the available devices based

on some parameters like battery, memory and CPU

utilization etc. it will check the parameters (CPU Utilization,

Battery Usage and Memory Usage) of all the available

devices and will compare them to find the best device with

maximum value of all the parameters to offload the game

tasks to. After finding the best device, offloading will take

place.

D. Proposed Algorithms

We have provided two algorithms for offloading purpose.

Algorithm 1 will keep continuous track of the current device

(on which the game is being executed) for the parameters

(CPU_Utilization, Battery_Usage, and Memory_Usage).

These parameters will be given to the Fuzzy Logic System

(FLS) as fuzzy input. The FLS will continuously calculate the

crisp value i.e., Fuzzy value F for these fuzzy inputs as shown

in Figure 9. Then the calculated fuzzy value will be compared

with the threshold value that is 80. If the fuzzy value will be

greater than or equal to the threshold value then the Fuzzy

Output FO will be Offload, otherwise there will be the output

of Keep.

Figure 9: Continuous Device Stats and Fuzzy Value

Algorithm 1 will take the device parameters such as CPU,

memory and battery as input variables. Its output will be

fuzzy value. It will continuously read the device parameters

until the game is completed and gives these parameters to the

FLS. The system will generate a crisp value i.e., fuzzy value

against theses parameters that will be used by the Algorithm

2 for offloading decision.

The Algorithm 2 will be executed based on the heuristic

approach to find the best device based on the parameters

(CPU_Utilization, Battery_Usage and Memory_Usage).

These parameters will be used as input. The algorithm will

Algorithm 1: Fuzzy Logic System (FLS) for Offloading

1 INPUT: Current Device D with its parameters

 DCPU_Utilization, DBattery_Usage and DMemory_Utilization

2 OUTPUT: Fuzzy value F for offloading of Current Device D and Fuzzy Output FO

1. for Current Device D do

2. while (Game is not completed) do

3. Read Device D parameters

DCPU_Utilization, DBattery_Usage and DMemory_Utilization

4. F = FuzzyLogicSystem (DCPU_Utilization, DBattery_Usage

and DMemory_Utilization);
5. if F ≤ Threshold then

6. FO = Keep

7. else

8. if F > Threshold then

9. FO = Offload

10. end if

11. end if

12. end while loop

13. end for

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

803 remittancesreview.com

continuously read the parameters of the available devices and

compare them as well as choose the best device for

offloading. Then offloading will take place to that device

based on FO which is calculated using Algorithm 1. If FO

will be Keep, the game will be executed on the current

device. If the FO will be Offload, then the offloading will

take place to the Best Device.

V. RESULTS AND DISCUSSION

Real-time games are concerned with the timely execution of

tasks in order to reduce latency. The existing system takes

much time for executing the game tasks. The proposed

system has achieved the efficient results as compared to the

existing system.

A. Fuzzy Rules Graphs

At first the results of the fuzzy rules are provided. Here we

have shown only one case of offload decision and one case

of keep decision. Other rule outputs were also tested and

graphs were generated. The figure 10 provides the output of

each component against Fuzzy Rule # 16.

if:Battery=’Low’ && CPU=’Medium’ &&

Memory=’High’ Fuzzy=’Offload’

The figure shows that when the Battery of Current device is

low, CPU utilization is medium and Memory utilization is

high then Fuzzy value shows the value of 80 that is equal to

the threshold value which means to offload.

Figure 11 depicts the Fuzzy Rule # 6 which is about to keep.

Figure 10: Output of Battery, CPU, Memory and Fuzzy value

against rule number 16 to offload decision

Figure 11: Output of Battery, CPU, Memory and Fuzzy value

against rule number 6 to keep decision

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

804 remittancesreview.com

if: Battery=’High’ && CPU=’Low’ &&

Memory=’Medium’ Fuzzy=’Keep’

The figure 11 shows that when the Battery of Current device

is high, CPU utilization is low and Memory utilization is

medium then Fuzzy value shows the value of 20 that is much

less than the threshold value which means to keep i.e., there is

no need of offloading.

B. Fuzzy based offloading versus no offloading

Latency is the network delay. We have compared the task

offloaded to edge and without offloading. For the later case

the application will be executed on Cloud once the task is

failed. Delay occurs due to data transmission time over the

network. Latency factors at cloud levels are high as expected

as shown in figure 12.

Figure 12: system latency when offloading is used versus no

offloading

The second parameter is the bandwidth comparison. For no

offloading case a high bandwidth is consumed at using the n

cloud for the failed tasks, where for offloading active

scenario very low bandwidth is used as the tasks are

offloaded to nearby edge device. Figure 13 shows the

bandwidth use for both scenarios. This shows that the

proposed system is efficient in latency and bandwidth both.

Figure 13: Bandwidth use comparison

The experiments for game task offloading were performed on

the existing system that is a simple system without having

any sort of offloading technique or any backup and our

proposed system having heuristic based offloading. We have

calculated the performance of the proposed system on the

basis of task completion. In each setup we have executed

different number of game tasks starting from single task to 5

task based game. And against each execution the execution

time is compared. This result is presented in the figure 14.

Figure 14: working with number of game tasks

The results show that offloading between edge devices

reduces the overall latency as well as makes the system

efficiency as compared to offloading to the cloud.

VI. CONCLUSION

Video games are getting famous day by day attracting the

business community to invest in the computer based games.

This require that a game should execute on the system that is

available and provide low latency. As cloud have high

latency edge computing can provide resources enough to

execute games successfully. At same these edge devices are

limited in power, battery, and computation constraints. So,

sometime require to offload the tasks of these games to some

other edge devices available in the vicinity as the games

cannot bear latency. Offloading a task to the cloud is the

default choice but increases the latency and cost. Hence a

heuristic based offloading system is proposed that uses fuzzy

logic at its base to decide when to make and offload decision.

The results show that a game tasks can be executed in the ege

computing environment successfully. This will help to

increase the response time and the efficiency will also be

increased. At the same time the edge nodes are resource

limited nodes so the bottleneck can be detected successfully

using lightweight fuzzy logic system. And once the

bottleneck exists offloading to some resource free edge node

can be performed. This can be handled efficiently as

normally the redundant smart devices available in the vicinity

can act as the edge device when required. This will reduce the

overall latency and ensure the system availability as well.

In the future, more parameters like Network bandwidth, Task

priority, and Latency delay can be considered to make the

system more efficient. Moreover, the proposed work can be

applied on the different fields i.e., in Real-time health

systems etc. More resources like Graphical Processing Units

(GPUs) and Field Programmable Gate Arrays (FPGAs) can

be considered for the games that require intensive

computation.

 REFERENCES

[1] M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, “A Review

on Internet of Things (IoT), Internet of Everything (IoE) and

Internet of Nano Things (IoNT)”, in 2015 Internet

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

805 remittancesreview.com

Technologies and Applications (ITA), pp. 219– 224, Sep.

2015, DOI: 10.1109/ITechA.2015.7317398.

[2] Vailshery, L.S. (2022) IOT connected devices worldwide

2019-2030, Statista. Available at:

https://www.statista.com/statistics/1183457/iot-connected-dev

ices-worldwide/ (Accessed: November 6, 2022).

[3] Posey, B., Shea, S. and Wigmore, I. (2021) What is fog

computing? - definition from Iotagenda, IoT Agenda.

TechTarget. Available at:

https://www.techtarget.com/iotagenda/definition/fog-computi

ng-fogging (Accessed: November 7, 2022).

[4] Shekhar S, Gokhale A (2017) Dynamic resource management

across cloud-edge resources for performance-sensitive

applications. 2017 17th IEEE/ACM International Symposium

on Cluster, Cloud, and Grid Computing (CCGRID). IEEE,

Madrid. pp 707–710

[5] Alrazgan, M. (2022) Internet of medical things and edge

computing for improving healthcare in Smart Cities,

Mathematical Problems in Engineering. Hindawi. Available at:

https://www.hindawi.com/journals/mpe/2022/5776954/

(Accessed: November 7, 2022).

[6] Sahni Y, Cao J, Zhang S, Yang L (2017) Edge mesh: A new

paradigm to enable distributed intelligence in the internet of

things. IEEE access 5:16441–16458

[7] Aazam, M., Zeadally, S. and Flushing, E.F. (2021) Task

Offloading in edge computing for machine learning-based

Smart Healthcare, Computer Networks. Elsevier. Available at:

https://www.sciencedirect.com/science/article/pii/S138912862

1001298 (Accessed: November 7, 2022).

[8] Ashraf, M. et al. (2022) “Distributed application execution in

Fog computing: A taxonomy, challenges, and future

directions,” Journal of King Saud University - Computer and

Information Sciences, 34(7), pp. 3887–3909. Available at:

https://doi.org/10.1016/j.jksuci.2022.05.002.

[9] Cong P, Zhou J, Li L, Cao K, Wei T, Li K (2020) A survey of

hierarchical energy optimization for mobile edge computing: A

perspective from end devices to the cloud. ACM Comput Surv

(CSUR) 53(2):1–44

[10] Elgendy IA, Zhang W, Tian Y-C, Li K (2019) Resource

allocation and computation offloading with data security for

mobile edge computing. Futur Gener Comput Syst

100:531–541

[11] Hájek P (2013) Metamathematics of Fuzzy Logic, Vol. 4.

Springer, Springer Netherlands

[12] F. Messaoudi, A. Ksentini and P. Bertin, "Toward a Mobile

Gaming Based-Computation Offloading," 2018 IEEE

International Conference on Communications (ICC), 2018, pp.

1-7, doi: 10.1109/ICC.2018.8422518.

[13] Fan, Y., Zhai, L. and Wang, H. (2019) “Cost-efficient

dependent task offloading for Multi users,” IEEE Access, 7,

pp. 115843–115856. Available at:

https://doi.org/10.1109/access.2019.2936208.

[14] Y. Zhang, H. Liu, L. Jiao, and X. Fu, ‘‘To offload or not to

offload: An efficient code partition algorithm for mobile cloud

computing,’’ in Proc. IEEE 1st Int. Conf. Cloud Netw.

(CLOUDNET), Nov. 2012, pp. 80–86.

[15] W. Zhang, Y. Wen, and D. O. Wu, ‘‘Energy-efficient

scheduling policy for collaborative execution in mobile cloud

computing,’’ in Proc. IEEE Conf. Conf. Comput. Commun.

(INFOCOM), Apr. 2013, pp. 190–194.

[16] M. Jia, J. Cao, and L. Yang, ‘‘Heuristic offloading of

concurrent tasks for computation-intensive applications in

mobile cloud computing,’’ in Proc. IEEE Conf. Comput.

Commun. Workshops (INFOCOM WKSHPS), Apr./May

2014, pp. 352–357.

[17] M.-A. H. Abdel-Jabbar, I. Kacem, and S. Martin, ‘‘Unrelated

parallel machines with precedence constraints: Application to

cloud computing,’’ in Proc. IEEE 3rd Int. Conf. Cloud Netw.

(CloudNet), Oct. 2014, pp. 438–442.

[18] Fan, Y., Zhai, L. and Wang, H. (2019) “Cost-efficient

dependent task offloading for Multiusers,” IEEE Access, 7, pp.

115843–115856. Available at:

https://doi.org/10.1109/access.2019.2936208.

[19] Almutairi, J. and Aldossary, M. (2021) “A novel approach for

IOT tasks offloading in edge-cloud environments.” Available

at: https://doi.org/10.21203/rs.3.rs-281532/v1.

[20] Wei, Z. and Jiang, H. (2018) “Optimal offloading in Fog

computing systems with Non-Orthogonal Multiple Access,”

IEEE Access, 6, pp. 49767–49778. Available at:

https://doi.org/10.1109/access.2018.2868894.

[21] F. Wang, J. Xu, and Z. Ding, ‘‘Optimized multiuser

computation offloading with multi-antenna NOMA,’’ in Proc.

IEEE Global Commun. Conf. (GLOBECOM) Workshop,

Singapore, Dec. 2017, pp. 1–7.

[22] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S.

Saroiu, R. Chandra, and P. Bahl, “MAUI: making smartphones

last longer with code offload,” in Proceedings of the 8th

International Conference on Mobile Systems, Applications,

and Services (MobiSys 2010), San Francisco, California, USA,

June 15-18, 2010, 2010, pp. 49–62.

[23] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,

“Thinkair: Dynamic resource allocation and parallel execution

in the cloud for mobile code offloading,” in Proceedings of the

IEEE INFOCOM 2012, Orlando, FL, USA, March 25-30,

2012, 2012, pp. 945–953.

[24] F. Messaoudi, A. Ksentini and P. Bertin, "Toward a Mobile

Gaming Based-Computation Offloading," 2018 IEEE

International Conference on Communications (ICC), 2018, pp.

1-7, doi: 10.1109/ICC.2018.8422518.

[25] Alrazgan, M. (2022) Internet of medical things and edge

computing for improving healthcare in Smart Cities,

Mathematical Problems in Engineering. Hindawi. Available at:

https://www.hindawi.com/journals/mpe/2022/5776954/

(Accessed: November 7, 2022).

[26] An overview of Fuzzy Logic System (no date) Section.

Available at:

https://www.section.io/engineering-education/an-overview-of-

fuzzy-logic-system/ (Accessed: December 5, 2022).

[27] B. Baron, P. Spathis, H. Rivano, M. D. de Amorim, Y. Viniotis,

and M. H. Ammar, “Centrally controlled mass data offloading

using vehicular traffic,” IEEE Transactions on Network and

Service Management, vol. 14, no. 2, pp. 401–415, 2017.

[28] F. Jiang, R. Ma, C. Sun, and Z. Gu, “Dueling deep q-network

learning based computing offloading scheme for f-ran,” in

2020 IEEE 31st Annual International Symposium on Personal,

Indoor and Mobile Radio Communications, 2020, pp. 1–6.

[29] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng,

“Multi-hop cooperative computation offloading for industrial

iot–edge–cloud computing environments,” IEEE Transactions

on Parallel and Distributed Systems, vol. 30, no. 12, pp.

2759–2774, 2019.

[30] Y. Wang, H. Ge, A. Feng, W. Li, L. Liu, and H. Jiang,

“Computation offloading strategy based on deep reinforcement

learning in cloud-assisted mobile edge computing,” in 2020

IEEE 5th International Conference on Cloud Computing and

Big Data Analytics (ICCCBDA), 2020, pp. 108–113.

[31] Ma, S.; Guo, S.; Wang, K.; Jia, W.; Guo, M. A cyclic game for

service-oriented resource allocation in edge computing. IEEE

Trans. Serv. Comput. 2020, 13, 723–734

 Remittances Review

September, 2023

Volume: 8, No: 3, pp.795- 806

ISSN: 2059-6588(Print) | ISSN 2059-6596(Online)

806 remittancesreview.com

[32] Gu, Y.; Chang, Z.; Pan, M.; Song, L.; Han, Z. Joint radio and

computational resource allocation in IoT fog computing. IEEE

Trans. Veh. Technol. 2018, 67, 7475–7484.

